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1 Integrality

Aim: Want to define Integral closures of algebraic extensions of Q.
All rings will be unital and commutative and ring maps preserve the unit.

Definition 1.1. A ⊆ B a extension of rings. We call b ∈ B integral over A if there exists a monic
polynomial p ∈ A[T ] such that p(b) = 0. We say that B is integral over A if every element of B is.

Theorem 1.2. Elements b1, . . . , bk ∈ B are integral over A iff the subring A[b1, . . . , bk] ⊆ B is
finitely generated as an A-Module.

Proof. Assume b ∈ B integral over A, and p ∈ A[T ] such that b is a root. Then p(b) = 0 implies
that bi for i ≥ n is and A-linear combination of {1, b1, . . . , bn−1} for n = deg(p). Hence A[b] is
finitely generated as an A-module. The general case follows inductively. This proves the “only if”
part.
For the “if” part assume that A[bi] is a finitely generated A-module with generators w1, . . . ,Wm.
Then for b ∈ A[bi] we have:

bwi =
∑
j

aijwj for some aij ∈ A

Recall that for every M a m×m matrix we have the Laplace formula:

MM∗ = M∗M = det(M) idm

Where M∗ij = (−1)i+jdet(Mij) and Mij is M with the i-th row and j-th column deleted. Now set
M = b idm−(aij) and w = (wi). Then our equation becomes simply:

Mw = 0

Applying Laplace we get that (M)wi = 0. Since 1 ∈ A[bi] is an A-linear combination of the wi we
have that det(M) = 0 i.e.:

det(b idm−(aij))

This is a monic polynomial equation over A for b. Hence b is integral over A.

Corollary 1.3. – A ⊂ B a ring extension. Define:

A∼ := {b ∈ B | b is integral over A}

Then A ⊂ A∼ ⊂ B is a subring of B called the integral closure of A in B

– A ⊂ B ⊂ C ring extensions. If C/B and B/A are integral then C/A is integral.

Definition 1.4. – For A ⊂ B we say that A is integrally closed in B if we have A∼ = A

– If A is a domain is called integrally closed if it is in its fraction field.

Remark 1.5. – Integral closures are integrally closed

– Every factorial ring and hence every principal ideal domain A is integrally closed. [Indeed:
Let x ∈ K = Quot(A) satisfying p(x) = 0 with p = aNJ

n + . . . a0. Write x = a/b with
a, b ∈ A coprime. Then:

an + an−1ba
n−1 + . . . a0b

n = 0

Assume some prime element π divides b, then π divides an and consequently also a. Thus
there is no such π and thus b is a unit. ]
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Now lets turn to the most important example for us: Let K/Q be algebraic and OK be the
integral closure of Z in K. Then we’ve seen that OK is an integrally closed subring of K.
The transitive property of integrality implies that for algebraic extensions:

Q ⊂ K ⊂ L

The ring OL is the integral closure of OK in L.
Question: How can we efficiently check integrality of an element?

Proposition 1.6. Let A be an integrally closed domain with quotient field K. Let L/K be and
algebraic extension. For β ∈ L let p ∈ K[T ] be the minimal polynomial of β over K. Then:
β is integral over A iff p ∈ A[X]

Proof. The “if” part is clear since p is monic. For the “only if part” let q ∈ A[T ] be a monic
polynomial with q(β) = 0. Choose a finite extension L∼/L such that q decomposes into linear
factors in L∼. Since p divides q in K[t] ⊂ L∼[T ], also p decomposes into linear factors in L∼[T ],
and the roots of p in L∼ are integral over A (Since they are roots of q). Hence the coefficients ci of
p are integral over A. Since ci ∈ K we in fact must have ci ∈ A since A is integrally closed.

Corollary 1.7. Let K/Q be a quadratic field. Then there exists a squarefree d ∈ Z with d 6= 1 and

K = Q(
√
d). Then OK = Z[

√
d] if d− 1 is not divisible by 4. Otherwise we have OK = Z[1+

√
d

2 ].

Proof. For d− 1 not divisible by 4 respectively d− 1 divisible by 4 the minimal polynomials with
coefficients in Z are

X2 − d resp. X2 −X +
1− d

4

Have zeroes
√
d resp. 1+

√
d

2 . Hence these elements are integral over Z and thus lie in OK . This
proves the one inclusion. For the other one let a ∈ OK with minimal polynomial P (X). Then
P ∈ Z[X].

– a ∈ Q then P (X) = X − a, hence a ∈ Z ⊂ rhs

– a not in Q, then a =

fracα+ β
√
d2 α, β ∈ Q with β 6= 0. Setting a

′
:= α−β

√
d

2 we have

P (X) = (X − a)(X − a)
′

= X2 − α+ fracα2 − dβ24)

Hence α ∈ Z and α2 − dβ2 ∈ 4Z. Hence dβ2 ∈ Z. Thus β ∈ Z since d was by assumption
square free.
If d is not 1 mod 4 then since d is not 0 mod have that

d ∼= 2, 3 mod 4

On the other hand α2, β2 ∼= 0, 1 mod 4. We know that α2 ≡ dβ2 mod 4. This implies

α2, β2 ≡ mod 4 =⇒ 2|α, β

and consequently a ∈ Z[
√
d]

For d ≡ 1 mod 4 we get

0 ≡ α2 − dβ2 ≡ α2 − β2 ≡ (α− β)(α+ β) mod 4

Thus 2|α− β or 2|α− β, but α− β = (α+ β − 2β hence 2|α− β
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Notation: Let L/K be a finite field extensions. For x ∈ L consider the K-linear map

mx : L→ L y 7→ xy

. Set TrL/K(x) := Tr(mx)
and NL/K(x) := det(mx) ∈ K
Then Tr : L→ K is additive and N : L× → K× is multiplicative. Since the map L→ HomK(L,L)
is a ring morphism. The trace and norm are coefficients of the characteristic polynomial of mx:

Pmx := det(t id−mx) = tn − Tr(mx) + · · ·+ (−1)nN(x)

For n = deg(L/K).

Theorem 1.8. If L/K is a finite separable extension and if σ : L→ K̄ runs over the n = deg(L/K)
pairwise different embeddings of L into the algebraic closure of K. Then we have for all x ∈ L:

Pmx =
∏
σ

(t− σ(x))

In particular :

TrL/K(x) =
∑
σ

σ(x)

NL/K(x) =
∏
σ

σ(x)

Proof. Let mx(t) be the minimal polynomial of x over K.If r = deg(K(x)/K), then

mx(t) = tr − cr−1t
r−1 − . . . c0 ci ∈ K

Claim: Pmx = md
x where d = deg(L/K(x)) = m/r

Proof of Claim: Consider the basis 1, x, . . . , xr−1 of K(x)/K and choose a basis a1, . . . , ad f L/K(x).
Then:

a1, a1x, . . . a1x
r−1, . . . , adx, . . . , adx

r−1

is a K-basis of L. In this basis the matrix of mx is a dxd block matrix with copies of A along
the diagonal where A has 1’s on the off diagonal and 0 else except the last line which consists of
c1, /dotscr−1(The “almost Jordan Form”). Then:

det(t id−A) = tr − cr−1t
r−1 − · · · − c0 = mx(t)

Hence Pmx(r) = det(t id−A)d = mx(t)d which implies our first claim.
For σ, τinHomK(L, K̄) say σ ∼ τ if they agree on x ∈ K. Choose a system of representatives
σ1, . . . σr for this relation. Then:

HomK(K(x), K̄) = {σr|K(x), . . . σr|K(x)}

and:
mx(t) :=

∏
i

(t− σi(x))

Indeed: both sides are monic polynomials of the same degree r with the same zeroes σi(x) and are
thus equal. Now we know by our earlier claim:

Pmx(t) = mx(t)d =
∏
i

(t− σ(x))d =
∏
i

∏
σ∼σi

(t− σ(x)) =
∏
σ

(t− σ(x))

Were we have used that separability implies that for each σi there are exactly d equivalent σ’s (i.e.
the extensions of σi|K(x) to L).
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Corollary 1.9. For finite field extensions K ⊂ L ⊂M we have that:

TrL/K ◦ TrM/L = TrM/K

and
NL/K ◦NM/L = NM/K

Proof. We only prove the case M/K separable but it is true in general.
The set HomK(M, K̄) decomposes in n = deg(L/K) equivalence relations under :

sigma ∼ τ ⇐⇒ σ|L = τ |L

Namely given n representatives σi the:

HomK(L, K̄) = {σi|L i}

Hnece for x ∈M we can write:

TrM/K(x) =
∑
i

∑
σ∼σi

σ(x) =
∑
i

Trσi(M)/σi(L)(σi(x))

[For the rightmost equation consider:

M K̄

σi(M)

σ

σi
σ
′

The σ’s with σ ∼ σi correspond to the σ
′

with σ
′ |σi(L) = id. Now use Thm1.4. for σi(M)/σi(L).

Note: σ = σ
′ ◦ σi] Get

TrM/K(x) =
∑
i

σi(TrM/L(x)) = TrL/K ◦ TrM/L(x)

And a similiar argument for the norm.

Final notation:

Definition 1.10. L/K finite separable field extension with a1, . . . , an a K-basis of L. Set:

d(a1, . . . , an) := det(A)2

Where A = (σi(aj))i,j and HomK(L, K̄ = {σ1, . . . , σn}). This element is called the discriminant of
a1, . . . , an. It is clearly invariant under permutation of the σi and αj

Alternatively:

TrL/K(aiaj) =
∑
k

σk(aiaj) =
∑
k

σk(ai)σk(aj)

implies that:
(TrL/K(aiaj)i,j) = AtA

In particular we have d(a1, . . . , an) = det((TrL/K(aiaj)ij) ∈ K. Example:
If some element x ∈ K̄ is separable over K and if n = deg(K(x)/K) then the basis {1, x, . . . , x−1}
of L = K(x) has discriminant (Vandermonde determinant)

d(x, . . . , xn−1) =
∏
i<j

(xi − xj)2 =
∏
i<j

(σi(x)− σj(x))2

6



where xi = σi(x). Exercise: the rhs is equal to:

±NK/Q(f
′
(x))

Where f is the minimal polynomial of x.
In particular we see that the the discriminant is nonzero since by separability xi 6= xj . Now for a
first application of the discriminant

Corollary 1.11. For L/K finite separable the K-bilinear form:

(−,−) : L× L→ K, (x, y) 7→ TrL/K(xy)

is non-degenerate. Furthermore if a1, . . . , an is a basis of L over K then:

d(a1, . . . , an) 6= 0

Remark 1.12. Since this is a perfect pairing it induces a K-linear isomorphism L
∼−→ L∨.

Proof. Since L/K is finite separable there exists a θ ∈ L such that L = K(θ). In terms of the basis
{1, θ, . . . , θn−1} the matrix M of the form (−,−) is given by:

M = (TrL/K(θi−1θj−1))i,j

And thus:

detM = d(1, θ, . . . , θn−1) =
∏
i<j

(σi(θ − σj(θ))2 6= 0

Hence M is invertible and the pairing is perfect. In particular the matrix N with respect to the basis
a1, . . . , an is invertible as well but by doing the same logic backwards we see that d(a1, . . . , an) 6= 0
as claimed.

Proposition 1.13. Let A be an integrally closed domain with quotient field K and let B be the
integral closure of A in a finite separable field extension L/K.

L

B K

A

(1)

Then:

– For x ∈ B we have TrL/K(x) ∈ A and NL/K(x) ∈ A

– For x ∈ B we have that x ∈ B× ⇐⇒ NL/K(x) ∈ A×

Proof. – x ∈ B =⇒ xm + am−1x
m−1 + . . . ao = 0 For ai ∈ A. for σ ∈ HomK(L, K̄) we get:

σ(x)m + am−1σ(x)n−1 + · · ·+ a0

and hence σ(x) ∈ K̄ is integral over A and consequently:

TrL/K(x) =
∑
σ

σ(x)

is integral over A. Since TrL/K ∈ K and since A is integrally closed in K we see that
TrL/K(x) ∈ A. Same argument works for the norm.
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– x ∈ B× =⇒ xy = 1 for some y ∈ B hence:

NL/K(x)NL/K(y) = 1

Since both factors are in A we get that NL/K(x) ∈ A×. Now consider some x ∈ B with
NL/K(x) ∈ A×. Then there exists some a ∈ A with:

1 = aNL/K(x) = a
∏
σ

σ(x) = (a
∏
σ 6=id

σ(x))x

Here we view L as a subfield of K̄ and denote the corresponding embedding by id. So the
element:

y := a
∏
σ 6=id

σ(x) = x−1 ∈ L

is integral over A (since the a and the σ(x) are) and hence lies in B.

Now we give an estimate for the denominators of elements in B:

Theorem 1.14. In the situation of the previous proposition let w1, . . . , wn ∈ B be a basis of L/K
with discriminant d = d(w1, . . . , wn) then:

dB ⊆ Aw1 + . . . Awn

Remark 1.15. For x ∈ L there exists some 0 6= a ∈ A with ax ∈ B

Proof. Since L/K there exists an equation:

xncn−1x
n−1 + · · ·+ c0 = 0

with ci ∈ K. Since K is the quotient field of A there exists some 0 6= a ∈ A with aci ∈ A for all i.
Multiplying the equation by an the gives an equation for ax with coefficients in A:

(ax)n + acn−1(ax)n−1 + · · ·+ anc0 = 0

And thus ax ∈ L is integral over A, hence lies in B.

Consequences:

– A basis as in the theorem always exists.

– QuotB = L

Proof. Fir w ∈ B there exits xj ∈ K such that:

w =
n∑
j=1

xjwj

Hence we get by applying the trace:

TrL/K(wiw) =

n∑
j=1

xjTrL/K(wiwj) (2)

Since 0 6= d = det(TrL/K(wiwj)) by assumption this has a unique solution. Specifically Cramer’s
rule gives:

xj =
aj
d

for certain aj ∈ A

So we get:

dw =

n∑
j=1

(dxj)wj =

n∑
j=1

ajwj ∈ Aw1 + · · ·+Awn

8



Definition 1.16. In the situation of prop(ref) assume that B is a free A-module of rank n. Then
a basis w1, . . . , wn ∈ B over A is called an integral basis of B over A. Such a basis is easily seen to
be a basis of L/K as well and thus:

n = rnkAB = deg(L/B)

Remark 1.17. In general B is not free as an A-module, so integral bases may not exist.

Theorem 1.18. Assume that in the Situation of our proposition the ring A is a PID. Then B and
more generally every finitely generated B-submodule M 6= 0 of L is free of rank n = deg(L/K) as
an A-module.

For the proof of this we need a consequence from the classification of finitely generated modules
for PIDs:

Theorem 1.19. Let A be a PID and M 6= 0 a finitely generated torsionfree A-module. Then M
is a free A-module of finite rank and every submodule N ⊆M is also free of rank ≤ rkAM .

Proof of Theorem 1.18. Choose a basis w1, . . . , wn ∈ B of L over K. Then by Thm (1.11) [wont
be right] we have:

dB ⊂ Aw1 + · · ·+Awn ⊂ B
for some 0 6= d ∈ A. Then Aw1 + . . . Awn is free of rank n since the wi are linearly independent
over K and hence over A. Since A was a principle domain our previous theorem asserts that dB is
a free A-module of rank ≤ n. Since B ∼= dB as an A-module it is also free with the same estimate.
But we also have Aw1 + · · ·+Awn ⊂ B so rkAB ≤ n and hence rkAB = n = degL/N .Now Choose
generators e1, . . . , er of M ⊂ L as a B-module and choose some 0 6= a ∈ A such that aei ∈ B for
all i. Then:

aM ⊂ B
so aM is a free A-module of rank ≤ rkAB = n and hence so is M . The map:

B →M w 7→ bw

is an injective map of A-modules. Hence we may view B as a submodule of M and thus n =
rkAB ≤ rkAM and thus rkAM = n.

Corollary 1.20. Let K/Q be a number field of degree n with ring of integers OK . Every finitely
generated OK submodule a 6= 0 of K is a free Z-module of rank n. The discriminant d(a1, . . . , an)
of a Z basis {ai} of a depends only on a and is denoted by d(a) We call

dk := d(Ok)

the discriminant of K.

Proof. The first part is clear by the theorem since Z is a PID.
Let b1, . . . , bn be another Z-basis of a. Then there is an invertible matrix (mij) = M ∈ Gln(Z)
with. such that :

bi =
∑
j

mijaj

hence:

σ(bi) =
∑
j

mijσ(aj)

for all σ ∈ HomQ(K, Q̄) = {σ1, . . . , σn}. Thus we have:

d(b1, . . . , bn) = det((σk(bi))k,i)
2 = (detMdet(σk(bi))k,i) = (detM)2d(a1, . . . , an)

Since M ∈ Gln(Z) we have that detM = ±1 so we see that:

d(a1, . . . , an) = d(b1, . . . , bn)
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Example 1.21. K/Q quadratic, K = Q(
√
d) for 1 6= d ∈ Z square-free. If d is not 1 in Z/4Z the

OK ∼= Z⊕ Z
√
d, hence:

dk =

∣∣∣∣1 1 +
√
d

1 1−
√
d

∣∣∣∣ = 4d

For d = 1 ∈ Z/4Z, we have OK = Z⊕ Z1+
√
d

2 and thus we get:

dk =

∣∣∣∣∣1 1+
√
d

2

1 1−
√
d

2

∣∣∣∣∣ = d

2 Dedekind Rings

Definition 2.1 (/Theorem). A ring R is called Noetherian if one of the following equivalent
conditions hold:

1. Each nonempty set S of ideals in R has a maximal element

2. Every ascending chain of ideals in R is stationary.

3. Every ideal in R is finitely generated

Proof. 1) =⇒ 2): Consider a a chain of ideals in R

I1 ⊂ I2 ⊂ . . .

By (1) the set S = {Ii|i ≥ 1} has a maximal element so the chain stabilizes.
(2) =⇒ (3): Assume that I is not finitely generated. This immediately gives you an infinite
ascending chain.
(3) =⇒ (1): Assume that a nonempty set S of ideals in R has no maximal element. Then there
exists a strictly ascending chain of ideals in the set S:

I1 ⊂ I2 ⊂ . . .

The union:
I =

⋃
i≥1

Ii

is an ideal in R and hence is finitely generated by (3). Thus it may be written as I = (a1, . . . , an)
for some a1, . . . , an ∈ R. Then there exists some N ≥ 1 with a1, . . . , an ∈ IN i.e. I = IN which is
contradiction.

Example 2.2. 1. Principle ideal domains are Noetherian, e.g. R = Z

2. By Hilbert’s Basis theorem:
R Noetherian =⇒ R[X] Noetherian

3. Q[X1, X2, . . . ] is not Noetherian.

Definition 2.3. A ring R is called a Dedekind ring iff:

1. R is an integrally closed domain

2. R is Noetherian.

3. Every prime ideal p 6= 0 is maximal

Example 2.4. – Every principal domain is Dedekind, so in particular Z

– Rings of integers are Dedekind [We will show this]
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Theorem 2.5. Let K/Q be a number field, then the ring of integers OK is a Dedekind ring.

Proof. Ad 2: Let I ⊂ OK be an ideal. We’ve seen that as a Z-module OK is finitely generated and
free. Hence the ideal I ⊂ OK is also finitely generated as a Z-module an thus also as an OK , i.e. OK
is Noetherian. Ad 1: Follows since Z is integrally closed and we’ve seen that integral closure is
transitive Ad 3: Let p 6= 0 be a prime ideal. Then p ∩ Z is a prime ideal of Z.
Claim: p ∩ Z 6= 0.
Indeed: Choose 0 6= y ∈ p. Then there exists an equation:

yn + an−1y
n−1 + . . . aO

with n ≥ 1, ai ∈ Z. We may assume that ao 6= 0 (otherwise divide by a suitable power of y). Since
y ∈ p the equation implies that a0 ∈ p∩Z 6= 0. Thus p∩Z = (p) for some prime p. Hence the map
Z ↪−→ OK induces an inclusion:

Z/p ↪−→ OK/p

and since OK is a finitely generated Z-module, the ring OK is a finitely generated Fp-vector space.
Consider 0 6= x̄ ∈ Op. The Fp-linear map:

φx̄ : OK/p→ OK/p, ȳ 7→ x̄ȳ

is injective since OK/p is a domain. However it is also a finite dimensional Fp-vector space this
map is in fact an isomorphism. Consequently x̄ is invertible and since it was arbitrary OK/p is a
field.

Notations: R a domain, K = Quot(R), let a, b, c be R-submodules of K. We set:

– ab := R-submodule of K generated by all products ab with a ∈ a, b ∈ b

– a−1 := {x ∈ K | xa ⊆ R}

Facts:

– Associativity

– commutativity

– aa−1 ⊆ T

– a ⊆ b =⇒ b−1 ⊆ a−1

– aR ⊂ a

For ideals a, b ⊆ R the product ab ⊂ a ∩ b is an ideal. We write a|b if b ⊂ a. This is clearly
transitive.
Fact: If p is a prime ideal, then:

p|ap =⇒ p|a or p|b

Proof. If p divides neither then there exists some a ∈ a with a not in p and n ∈ b with b not int p.
Then since pis prime ab is not in p and hence p does no divide ab

Theorem 2.6. Let R be a Dedekind ring. Then every ideal 0 6= a 6= R can be written as a product
of nonzero prime ideals:

a =
r∏
i=1

pi

This is unique up to ordering.

For the proof we need the following Lemma:

11



Lemma 2.7. R a Dedekind ring with quotient field K. Then we have:

1. For every a 6= 0 in R there exists prime ideals p1, . . . , pr with a|p1 . . . pr

2. if p 6= 0 is a prime ideal in R then for every ideal a 6= 0 we have :

a $ ap−1

Proof. Proof of the Theorem using the Lemma Let S be the set of ideals 0 6= a 6= R which do not
have a decomposition into prime ideals as in the theorem. We claim that S = ∅. Indeed, assume
that S 6= ∅, then since the ring is Noetherian S has a maximal element. Choose a maximal ideal p
containing a. Since R ⊂ p−1 we get that:

a ⊂ ap−1 ⊂ pp−1 ⊂ R

Now by our Lemma we know that a $ ap−1 and p $ pp−1 ⊂ R. Since p was maximal in fact
pp−1 = R and since a was maximal in clS we have that ap−1 is not in S. Note that ap−1 6= 0 since
a 6= 0 and ap−1 6= R [otherwise:

a = aR = app−1 = ap−1p = Rp = p

contradicting that a ∈ S]. Thus there exist prime ideals p1, . . . pr such that:

ap−1 =
∏
i

pi

hence:

a = p
∏
i

pi

Ad Uniqueness: Assume we have two decompositions

a =
r∏
i=0

pi =
s∏
i=0

qi

then p1|
∏
i qi and inductively we conclude that p1|qj for some j. By renumbering we may assume

that p1|q1 since q1 is maximal. Then again by our lemma we have that:

p1 $ p1p
−1
1 ⊂ R

and by maximality the rightmost inclusion is an equality. Thus multiplying by p−1
1 gives”

r∏
i=1

pi =
s∏
i=1

qi

and inductively we see that r = s and pi = qi for all i.

For the proof we needed the following Lemma:

Lemma 2.8. If R is a Dedekind Ring, with Quotient field K, then the following hold:

(a) For every ideal 0 6= I in R there exists nonzero prime ideals P1, . . . , Pr such that:

I|P1 · · ·Pr

(b) If P a nonzero prime ideal in R, then for every ideal 0 6= I in R we have that:

I $ IP−1
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Proof. (a) Let M be the set of ideals I 6= 0 which do not satisfy the assertion (a). We claim
that M = ∅. Assume that M 6= ∅, since R Noetherian there exists a maximal I ∈ M . By
definition of M , the ideal I cannot be prime. Hence there exist b, c ∈ R with bx ∈ I but b, c
not in I. Set J = I + (b) and H = I + (c). Then I $ J and I $ H and JH ⊂ I, i.e. I|JH.
We have that J,H are not in M since I was maximal in M . Thus we get can find primes Pi
such that:

J | P1 · · ·Ps and H | Ps+1 · · ·Pr
and hence:

I | P1 · · ·Pr
Which is a contradiction. This shows that M = ∅

(b) We first show that R $ P−1 (“⊂” is clear). If P = (a), then since a 6= 0 and a−1 ∈ P−1. If
R = P−1, then a−1 ∈ R and so a is a unit meaning P = (a) = R which is a contradiction, so
R $ P=1. Now assume that P is not principal. Choose some 0 6= a ∈ P . By part (a) there
exits prime ideals Pi 6= 0 such that:

(a) |
r∏
i=1

Pi

Assume that r is minimal with this property. Then since P is prime we get that for some i:

P | (a) =⇒ P | Pi

and assume that i = 1. However since P1 6= 0 it is maximal (Since R was Dedekind) so we
have that P = P1. Moreover we have: (a) $ P i.e. (a) does not divide P = P1 =⇒ r ≥ 2.
Since r was minimal (a) does not divide P2, · · · , Pr. Hence there exists some b ∈ P1 · · ·Pr
which is not in (a) i.e. a−1 /∈ R. On the other hand:

bP ⊂ PP2 · · ·Pr = P1 · · ·Pr

And thus :
a−1bP ⊂ R =⇒ a−1n ∈ P−1

yielding R $ P−1.
Now for the general case: Let I 6= 0 be an ideal.
Claim: I ( IP−1, only have to show that I 6= IP−1 Assume: I = IP−1

Since R is Noetherian have that I = (a1, . . . , an) for ai ∈ R. For each x ∈ P−1 we get that:

xai =
n∑
j=1

rijaj

Consider the AMtrix:
M = (xδac − rij)i,j

we see that :

M

a1
...
an

 = 0

For d = detM we get :

d

a1
...
an

 = M∗M

a1
...
an

 = 0

Hence d = 0 since I 6= 0. Hence x is a zero of the monic polynomial:

f(t) := det(T id− (rij)) ∈ R[T ]
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so x ∈ K is integral over R and since R is integrally closed we have in fact x ∈ R. So we’ve
seen that P−1 ⊂ R so that P−1 = R which is a contradiction to what we’ve shown in the
first special case.

Remark 2.9. 1. By Theorem 2.3. (does not match) any ideal 0 6= I 6= R in a Dedekind ring R
can be written as :

I =
r∏
i=1

Pνi
i

where the Pi are the pairwise different prime ideals dividing I. This decomposition is unique
up to ordering.

2. For ideals I, J /∈ {0, R} in any ring R we have:

I + J = R ⇐⇒ There is no prime ideal P such that P | a and P | J

The ideals I in a ring R always form a commutative monoid under multiplication. If R is a
Dedekind ring, using the more general construct of fractional ideals this monoid embeds into a
group as follows:

Definition 2.10. Let R be a Dedekind ring, K its Quotient field. A fractional ideal of K is a
finitely generated R-submodule I 6= 0 of K.

Remark 2.11. Let 0 6= I ⊂ K be an R-submodule. Then I is a fractional ideal of K if and only
if there exists some 0 6= c ∈ R such that cT ⊂ R

Proof. If Iis afractional ideal then it is generated by some elements a1, . . . , an ∈ K. choose some
0 6= c ∈ R with cai ∈ R for all i and so cI ⊂ R.
For the other direction assume that cI ⊂ R, since R is Noetherian the ideal cI is finitely generated.
The isomorphism of R-modules I

·c−→ cI shows that I is also finitely generated.

Example 2.12. For a ∈ K× we see that (a) := aR is a fractional ideal.

In the discussion before the last Theorem we defined a multiplication on the set of R-submodules
of K. The product of two fractional ideals is again a fractional ideal and we get a monoid. More
is true:

Theorem 2.13. Let R be a Dedekind ring with fraction field K. Then the monoid of fractional
ideals of K is a group, called the ideal group IK of K. The unit is given by R and the inverse of
I ⊂ K.

I−1{x ∈ K | xI ⊂ R}

Proof. I fractional implies that there exits some 0 6= c ∈ R with cI ⊂ R, hence c ∈ I−1 6= 0. Claim
I−1 is finitely generated.
Have I = (a1, . . . an) with wlog a1 6= 0. By definition we have xa1 ∈ R for all x ∈ I−1 hence
a1I
−1 ⊂ R which is an ideal an thus finitely generated i.e. a1I

−1 = (b1,
′ . . . bm) for some bi ∈ R.

Hence b1
a1
, . . . , bma1 generates i−1 as an R-module. So we’ve shown that if I is a fractional ideal so is

I−1 which actually holds in any Dedekind domain.
Claim: For a fractional ideal I we have that II−1 = R
We show this in three steps:

1. For I = P a nonzero prime ideal. Then we’ve shown that P j PP−1 ⊂ R so PP−1 = R
since P was prime.
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2. For any ideal 0 6= I $ R we write I as a product of prime ideals:

I =
r∏
i=1

Pi

Set J =
∏r
i=1 P

−1
i . Then by (1) we have that JI = R. Also have that J ⊂ I−1 by definition

of the latter. For x ∈ I−1 have that xI ⊂ R so that xJI ⊂ J but xJ = xR and consequently
x ∈ J , i.e. I−1 ⊂ J .

3. For a fractional ideal I ∈ K there exits some 0 6= x ∈ R with xI ⊂ R. For the ordinary ideal
cI we have seen in (2) that (cI)(cI)−1 = R. It’s easy to see that (cI)−1 = c−1I−1 and so
II−1.

We showed that fractional ideals have the form L = c−1I for some 0 6= c ∈ R and some ideal
I ⊂ R.

Remark 2.14. Every fractional ideal L of K has a unique representation

L =
∏

PνP ννP ∈ Z

where νP = 0 for almost all P and the product runs over all prime ideals 6= 0 of R. Thus the group
of fractional ideals IK is a free abelian group on the set of non-zero primes of R.

Proof. There exists some 0 6= c ∈ R with cLsubsetR. Write

(c) =
∏

Prp rP ∈ Z≥0

and:

cL =
∏

PsP sP ∈ Z≥0

Hence we get that:

L = c−1(cL) =
∏

P
sp−rP

and setting νP = sP−rP ∈ Z gives existence. Uniqueness follows from multiplying any factorization
with c.

Definition 2.15. A fractional ideal is called principal if it is free of rank one i.e. = aR. These
form a subgroup PK of IK The quotient:

ClK := IK/PK

Is called the ideal class group of R

We have the basic exact sequence:

1→ R× → K× → IK → ClK → 1

So the “difference” between working with numbers a ∈ K× and fractional ideals is controlled by
the units R× and the class group of ClK . If R = OK , K/Q a number field then it is known that:

1. R× is a finitely generated abelian group (Dirichlet unit theorem)

2. ClK is finite

We will prove this in the next section using Minkowskis “geometry of numbers”.
One more remark: In modern algebraic geometry the Class group is interpreted as H1(Spec(R),O×)
the Picard group of the scheme Spec(R).
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3 Minkowski Theory

Recall: A subset D of a topological space is called discrete if for every point x ∈ D there is an open
there is an open subset x ∈ U ⊂ X such that D ∩ U = {x}.

Example 3.1. – Z ⊂ R is discrete and closed

– D = { 1
n | n ≥ 1} is discrete in R [but not closed since D̄ = D ∪ {0}]

Proposition 3.2. Let X be a Hausdorff space and let D ⊂ X be discrete and closed. Then for
every compact subset K ⊂ X the intersection D ∩K is finite.

Proof. Since D is discrete we have for all x ∈ Ux ⊂ X with D∩Ux = {x}. Since D is closed X \Dis
open and hence:

(X \D) ∪
⋃
x∈D

Ux = X

is an open covering thus since K is compact there exits x1, . . . , xn ∈ D such that K ⊂ (X \D) ∪
Ux1 ∪ . . . Uxn so we get that:

D ∩K ⊂ (D ∩ Ux1) ∪ · · · ∪ (D ∩ Uxn) = {x1, . . . , xn}

We will be interested in discrete subgroups Γ in finite dimensional R-vector spaces V .

Remark 3.3. 1. Zm ⊂ Rn is a discrete subgroup.

2. Z[i] = OQ(i) ⊂ C is a discrete subgroup.

3. Z[
√

2] = Z⊕ Z
√

2 ⊂ R is a subgroup but not discrete.
Fact: Any discrete subgroup Γ ⊂ V is in fact closed.

Choose a norm ||−|| on V and for v ∈ V let:

Uε(v) = {w ∈ V | ||v − w|| < ε}

which induces a topology on V as usual which does not depend on the choice of norm, since all
norms on finite dimensional R-vector spaces are equivalent.

Proof of Fact. Since Γ ⊂ V is discrete there exists ε > 0 such that Γ∩Uε(0) = {0}. Assume γn → v
is a convergent sequence with members γn ∈ Γ. Then (γn) is a Cauchy sequence, hence there is
some N = Nε such that:

||γn − γm|| < ε for m,n ≥ N

i.e. γn − γm ∈ Γ ∩ Uε(0) = {0}. Thus γn = γm for m,n ≥ N so v = γN ∈ Γ, so Γ is closed.(Here
we’ve used that V is first countable so that we can check closedness via sequences).

Questions: How to decide whether a given subgroup Gamma ⊂ V is discrete? How do the discrete
subgroups of V look?

Theorem 3.4. A subgroup Γ ⊂ V with dimRV <∞ is discrete iff there are R-linearly independent
vectors v1, . . . , vm ∈ V which generate Gamma as a group. in This case we have that Γ ∼=

⊕
i Zvi

is a free Z-module of rank m ≤ n.

Remark 3.5. In our examples Z[
√

2] is a free Z-module of rank 2 > 1 = n. Hence it cannot be
discrete by the theorem. Note that 1,

√
2 are Z-linearly independent but not R-linearly.
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Proof. If Γ is generated by R-linearly independent v1, . . . , vm ∈ V choose vm+1, . . . , vn ∈ V such
that the vi form a basis of V . We show that Γ ⊂ V is discrete. For

γ =
m∑
i=1

kivi ∈ Γ

Set:

U{
n∑
i=1

xivi|xi ∈ (ki −
1

2
, ki +

1

2
for 1 ≤ i ≤ m and xi ∈ R}

Then U ⊂ V is open, γ ∈ U and in fact Γ ∩ U = {γ}.
Let Γ ⊂ V be discrete. Let V ′ = 〈Γ〉 be the R-subspace generated by Γ and write m = dimV ′.
Then there is an R-basis v1, . . . , vm of V ′ such that vi ∈ Gamma for all i [Indeed, choose a basis
v′1, . . . v

′
m of V ′, then each v′i is an R-linear combination of finitely many vectors in Γ. Thus a finite

set of vectors in Γ generates V ′, so we take a maximal set of linearly independent vectors from this
set to get a basis of V ′ consisting of vectors in Γ]. Set Γ′ =

⊕
i Zvi ⊂ Γ, then we claim that:

card(Γ/Γ′) <∞

To see this write:
Γ =

∐
i∈I

γi + Γ′

where the γi ∈ Γ for i ∈ I are a system of representatives for Γ/Γ′. For the “fundamental domain”:

Φ := {x1v1 + . . . xmvm | 0 ≤ xi < 1}

we have that:
V ′ =

∐
γ′∈Γ′

γ′Φ

Hence γi = γ′i + µi with γ′ ∈ Γ′ and µi ∈ Phi, so µi ∈ Γ ∩ Φ. Since Γ is discrete and closed in V
and since Φ̄ is compact, the set Γ ∩ Φ̄ is finite as we showed earlier. Hence the set of classes

gammai + Γ′ = µi + Γ′, i ∈ I

is finite i.e. I is finite. Thus q := card(Γ/Γ′) is finite as claimed. In particular we have that qΓ ⊂ Γ′.
Therefore

Γ ⊂ 1

q
Γ′ = Z

v1

q
⊕ · · · ⊕ Zvm

q

Hence Γ is a free Z-module of rank r ≤ m, i.e :

Γ = Zw1 ⊕ · · · ⊕ Zwr

Since Γ generates the m-dimensional R-vector space v′ it follows that r = m and moreover the wi
are an R-basis of V ′, so in particular they are R-linearly independent in V .

Remark 3.6. Known: Every abelian group is the class group of some Dedekind Domain. Fur-
thermore every finite abelian group is a quotient of the class group of a cyclotomic extension of
Q.

Definition 3.7. A discrete subgroup Γ of an n-dimensional R-Vector space V is called a lattice if
one of the following equivalent conditions holds:

1. rkZΓ = n

2. There is an R-basis of V which generates Γ as an abelian group.
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3. There is a bounded (or compact) subset M ⊂ V such that

V =
⋃
γ∈Γ

γ +M

Here the boundedness is defined with respect to some norm on V , which is well defined, since
all norms on V are equivalent.
Indeed: We have already seen 1) ⇐⇒ 2).

Proof. (2) =⇒ (3) By assumption Γ =
⊕

i Zvi for an R-basis {vi} of V . The fundamental domain:

Φ = {v1x1 + · · ·+ xmvm | 0 ≤ xi < 1}

is bounded and Φ̄ is compact. We have:

V
∐
γ∈Γ

γ + Φ =
⋃
γ∈Γ

γ + Φ

(3) =⇒ (1) Assume that V =
⋃
γ∈Γ γ +M for some bounded M ⊂M . Let V

′
be the vector space

generated by Γ
Claim: V = V ′

Let v ∈ V for every k ≥ 1 we have kv = γk +mk with γk ∈ Γ and mk ∈M . Hence we have:

V =
1

k
γk +

1

k
mk

Since M is bounded limk→∞
1
kmk = 0 and hence:

v = lim
k→∞

1

k
γk

Since γk
k ∈ V

′ which is closed in V , we have v ∈ V ′. So we get V ⊆ V ′ i.e. V = V ′. It follows that
rkZΓ ≥ n. Using our theorem we know that rkZΓ ≤ n since Γ was by assumption discrete so the
rank is in fact = n

Remark 3.8. A discrete subgroup Γ ⊂ V is a lattice iff the quotient V/Γ is compact.

Proof. We have that Γ = v1Z⊕ vmZ where the vi are R-linearly independent with m ≤ n = dimV .
We can extend these to a basis v1, . . . vn of V . then we have that:

V/Γ ∼= v1R⊕ . . . vnR�v1Z⊕ . . . vnZ
∼= R/Z× . . .R/Z× R× · · · × R
∼= (S1)m × Rn−m

Hence this is compact iff m = n.

Notation: Let Γ be a lattice in V with Z-basis v1, . . . , vn. By our Theorem this is also an R-basis
of V . For the corresponding fundamental domain:

Φ = {
n∑
i=1

xivi | 0 ≤ xi < 1}

We set:
vol(Γ) := λ(Φ)

where λ is the Lebesgue measure on V with respect to the v1, . . . , vn. In fact this is independent of
the choice of vi. Indeed, let w1, . . . , wn be a another Z-basis of Γ with corresponding fundamental
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domain Ψ. Let M be the matrix with M(vi) = wi for all i. Then we have M(Φ) = Ψ and moreover
M is unimodular i.e. M ∈ GLn(R) and

M,M−1 ∈ Mn(Z)

hence we have that:
detM±1 ∈ Z =⇒ detM ∈ {±1}

and consequently:
λ(Ψ) = λ(M(Φ)) = |detM |λ(Φ) = λ(Φ)

Definition 3.9. A subset X ⊆ V is called centrally symmetric if for all x ∈ X we have −x ∈ X

Theorem 3.10 (Minkowski’s lattice point theorem). Let Γ be a lattice in an n-dimensional eu-
clidean vector space V and let X ⊆ V be a centrally symmetric, convex Borel set. Assume that one
of the following conditions holds:

1. λ(X) > 2nvol(Γ)

2. X is compact and λ(X) ≥ 2nvol(Γ)

Then X contains at least one point 0 6= γ ∈ Γ.

Example 3.11. Γ = Z2 ⊂ R2, e1 = (1, 0), e2 = (0, 1),Φ = (0, 1)2, vol(Γ) = λ(Φ) = 1 Then the
condition in the theorem means that λ(X) > 22 = 4. For our choice we have λ(X) = 4 but X ∩Z2,
which shows that the strictness of the inequality is necessary in the non-compact case. In fact this
counterexample works in every dimension.

Proof. It suffices to show that there exist γ1 6= γ2 ∈ Γ with:

D = (γ1 +
1

2
X) ∩ (γ2 +

1

2
X)

Namely if ξ ∈ D then:

ξ = γ1 +
12

2
x2 = γ1 +

1

2
x2

with x1, x2 ∈ X. The point:

0 6= γ := γ1 − γ2 =
1

2
x2 −

1

2
x1

lies on the line from x2 ∈ X to −x1 ∈ X, hence since X is convex we have γ ∈ X. Assume that
the sets γ + 1

2X for γ ∈ Gamma are pairwise disjoint. Then we have:

Γ = λ(Φ) ≥ λ

Φ ∩
∐
γ∈Γ

(γ +
1

2
X)


= λ

∐
γ∈Γ

(Φ ∩ (γ +
1

2
X))


=
∑
γ∈Γ

λ(Φ ∩ (γ +
1

2
X))

=
∑
γ∈Γ

λ

(
(Φ− γ) ∩ 1

2
X

)

≥ λ

⋃
γ∈Γ

(Φ− γ) ∩ 1

2
X


= λ(

1

2
X) since

∐
γ∈Γ

Φ− γ = V

= |det(·1
2

: V → V )|λ(X) = 2−nλ(X)
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This is a contradiction to the assumption λ(X) > 2−nvol(Γ). This shows (i)
For (ii) and ν ≥ 1 set Xν := (1 + 1

νX) Then Xν is still a centrally symmetric, convex Borel set.
Furthermore we have:

λ(X) = (1 +
1

ν

n

λ(X) > λ(X)) ≥ 2−nvol(Γ)

By (i) we therefore get that Xν ∩ (Γ \ {0} 6= ∅). Now since X is compact and hence closed we see
that: ⋂

ν≥1

Xν = X

now the sets Xν ∩ (Γ \ {0}) are closed in V and hence in X1. Since X was compact so is X1 and
we get that the following intersection of non-empty closed sets:⋂

ν≥1

Xν(Γ \ {0}) = X ∩ (Γ \ {0})

is again non-empty.

LetK/Q be a number field of degree n. We know that there arem pairwise different embeddings:

σ : K ↪−→ C

Let c : C → C be the complex conjugation, then if σ is an embedding σ̄ := c ◦ σ is an embed-
ding. We call σ a real embedding if σ̄ = σ. Denote by r1 the number of real embedings of K.
The non-real embedings appear in pairs σ, σ̄ hence there is some r2 ∈ Z≥0 such that 2r2 is the
number of non-real embeddings of K. We have that n = r1 + 2r2 is the total number of em-
bedings. Usual one says “complex” for “non-real”. Let σ1, . . . , σr1 be the real embeddings and
σr1+1, . . . , σr1+r2 , σ̄r1+1, . . . , σ̄r1+r2 the complex embeddings. Set

σ(x) = (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x))

The map:
σ : K ↪−→ Rr1 × Cr2 = Rn

is called the “canonical embedding of K”.
More invariantly this is the map:

K → K ⊗Q R

Proposition 3.12. Let M ⊂ K be a free Z-module of rank n. Then σ(M) is a lattice in Rn and
we have:

volσ(M) = 2−r2 |d(M)|
1
2

where d(M) = (det((σi(xj))i,j)
2 for any Z basis x1, . . . , xn of M is the discriminant of M .

Proof. Identifying Rr1 × Cr2 ∼= Rn we have:

σ(x) = (σ1(x), . . . , σr! ,Reσr1+1(x), Imσr1+1(x), . . . , Imσr1+r2(x)

Let D be the determinant with rows σ(x1), . . . , σ(xn) then we have that:

D = ±(2i)−r2 det((σi(xj))i,j)

[Here’s the argument in the case r1 = 0, r2 = 1 which shows how to proceed in general. In this case
σ(x) = (Reσ1(x), Imσ1(x) and:

D =

∣∣∣∣σ(x1)
σ(x2)

∣∣∣∣ =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ =
1

i

∣∣∣∣a1 ib1
a2 ib2

∣∣∣∣ =
1

2i

∣∣∣∣a1 + ib1 2ib1
a2 + ib2 2ib2

∣∣∣∣ =
−1

2i

∣∣∣∣σ1(x1) σ̄1(x1)
σ1(x2) σ̄2(x2)

∣∣∣∣
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Thus since d(M) 6= 0 we get D 6= 0 so the vectors σ(x1), . . . , σ(xn)in Rn are R-linearly independent
and hence σ(M) is a lattice. Let T be the matrix with rows σ(x)i. If:

E = {
∑
i

tiei | 0 ≤ ti < 1} ⊂ Rn

then T (E) is a fundamental domain Φ for the lattice σ(M) hence:

vol(σ(M)) = λ(T (E)) = det(T )vol(E)

= det(T )D = 2−r2 det(σi(xj)) = 2−r2d(M)
1
2

Before we can proceed we need the so called norm of an ideal.
Setup:
K/Q number field, deg(K/Q) = n, R = OK , N(x) := |NK/Q(x)| for x ∈ K

Proposition 3.13. For x ∈ R, x 6= 0 we have that N(x) = |R/x|.

Proof. We have that xR ∼= R are both free Z-modules of rank n. By the elementary divisor theorem
applied to the inclusion:

Rx ⊆ R

there exists a Z-basis e1, . . . , en of the Z-module R and elements d1, . . . , dn ∈ Z with di ≥ 1 such
that d1e1, dots, dnen is a basis of Rx. As abelian groups we therefore have an isomorphism:

R/x ∼= Z/d1 × · · · × Z/dn

so we see that:
|R/x| = d1 · · · dn

Let φx : K → K be the multiplication by x. Then by definition we had that:

N(x) = |det(φx)|

We write φx = ψ ◦ φ where:

φ :K
∼−→ K ψ : K

∼−→ K

ei 7→ diei diei 7→ xei

Then det(ψ) = d1 · · · dn and φ(R) = Rx and moreover ψ(Rx) = Rx hence det(ψ) = ±1 since ψ is
unimodular. Thus we find that:

N(x)|det(φx)| = |det(ψ)||det(φ)| = d1 · · · dn = |R/x|

Definition 3.14. For an ideal 0 6= a ⊂ OK the number:

N(a := |OK/a|

is called the norm of a

Remark 3.15. 1. For 0 6= a ∈ a have OKa ⊂ a hence there is a surjection:

O/a→ OK/a

and thus :
N(a) = |OK/a||≤ OK/a| = N(a)

is finite.
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2. For a principal ideal a = (a) we have seen that:

N(a) = N(a)

Proposition 3.16. For two non-zero ideals a, b ⊂ OK we have that:

N(a)N(b) = N(ab)

Proof. Since b = P1 · · ·Pr for some nonzero prime ideals Pi, it suffices to show that:

N(aP) = N(a)N(P)

for all nonzero prime ideal P ⊂ OK . Note that these are in particular maximal. Since aP ⊂ a we
have that:

R/a ∼= R/aP�a/aP
as abelian groups, hence we see that:

|R/aP| = |R/a| · |a/a/P|

i.e.:
N(aP) = N(a)|a/aP|

Claim: |a/aP| = |R/P| We may view a/aP as a vector space over the (in fact finite) field R/P.
We have a bijection between ideals Q ⊂ R with aP ⊂ Q ⊂ a with the R/P sub vector spaces of
A/AP . The unique decomposition into prime ideals implies that either Q = a or Q = aP hence
a/aP has no non-trivial subspaces thus it is one dimensional i.e. a/aP ∼= R/P which proves the
claim.

Back to Minkowski Theory:

Corollary 3.17. Let K be a number field with discriminant d = dK/Q and let a 6= 0 be and ideal
in OK . then σ(OK) and σ(a) are lattices in Rn under the canonical embedding σ : K → Rn and
moreover we have:

vol(σ(OK)) = 2−r2 |d|1/2

vol(σ(a)) = 2−r2 |d|1/2N(a)

Proof. Since both OK and a are free Z-modules of rank n = deg(K/Q) in K we have already seen
that σ(OK) and σ(a) are lattices and that the formula for vol(σ(OK)). Furthermore we have that:

OK/σ
∼−→ σ(OK/σ(a)

hence the index of the lattice σ(a) in the lattice σ(OK) is N(a). It follows that:

vol(σ(a) = N(a)vol(σ(OK))

This follows form the following general argument: Let Γ′ ⊂ Γ ⊂ V be lattices in a euclidean vector
space V . Choose a Z-basis v1, . . . , vn ∈ Γ such that d1v1, . . . , dnvn is a Z-basis opf Γ′ for suitable
di ∈ Z with di ≥ 1. Then:

Γ/Γ′ ∼= Z/d1 × · · · × Z/dn
hence |Γ/Γ′| = d1 · · · dn if Ψ is a fundamental domain of Γ. Then φ(Φ) is a fundamental domain
for Γ′ where φ is the linear map defined via φ(vi) := divi. Thus we get:

vol(Γ′) = λ(φ(Φ)) = |det(φ)|λ(Φ) = d1 · · · dnλ(Φ) = |Γ/Γ′|vol(Γ)
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Theorem 3.18. Let K/Q be a number field of degree n = r1 + 2r2 and discriminant d = dK/Q.
For every ideal a 6= 0 of OK there exists some 0 6= x ∈ a with:

|NK/Q(x)| ≤ (
4

π
)r2

n!

nn
|d|1/2N(a)

Proof. Let σ : K → Rr1 × Cr2 be the canonical embedding. For t > 0 let

Xt :=

(y1, . . . , yr1 , z1, . . . , zr2 ∈ Rr1 × Cr2 |
r1∑
i=1

|yi|+ 2

r2∑
j=1

|zj | ≤ t


Then Xt is compact, convex and centrally symmetric with:

λ(Xt) = 2r1
(π

2

)r2 t

n!

Choose t such that:
λ(Xt) = 2nvol(σ(a))

i.e.:

2r1
(π

2

)r2 tn
2!

= 2n−r2 |d|1/2N(a)

equivalently:
tn = 2n−r1π−r2n!|d|1/2N(a)

so this is solvable. Now by Minkowskis theorem there exits some 0 6= w ∈ σ(a)∩Xt. Let 0 6= x ∈ a
be the element with σ(x) = w. Using the inequality of the geometric and the arithmetic mean:

n
√
a1 · · · an ≤

1

n
(a1 + · · ·+ an) for ai ≥ 0

we find by setting wi+r2 = w̄i for r1 + 1 ≤ i ≤ r2 that:

|NK/Q(x)| =
n∏
i=1

|σi(x)| =
n∏
i=1

|wi|

≤

(
1

n

n∑
i=1

|wi|

)n

=
1

nn

(
r1∑
i=1

|wi|+ 2

r1+r2∑
i=r1+1

|wi|

)n
≤ tn

nn

Now plugging in our choice of t and the fact that n = r1 + 2r2 we get the claim.

Corollary 3.19. Let K be a number field of degree n = r1 +nr2 and discriminant d = dK/Q. Then
every ideal class in ClK = IK/PK contains an ideal b ⊂ OK such that:

N(b) ≤
(

4

π

)r2 n!

nn
|d|1/2

Proof. Let k ∈ ClK and a′ ∈ k. We may assume that a = (a′)−1 ⊆ OK . By the previous theorem
there exists some 0 6= x ∈ a such that:

|N(x)| ≤
(

4

π

)r2 n!

nn
|s|1/2N(a)

By definition of a−1 we see that b := xa−1 ⊂ OK . Moreover b = (x)a′ ∈ k and:

N(b) = N(x)N(a′) = |N(x)|N(a)−1 ≤
(

4

π

)r2 n!

nn
|d|1/2
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Corollary 3.20. Let K/Q be a number field of degree n with discriminant d, then for n ≥ 2 we
have:

|d| ≥ π

3

(
3π

4

)n−1

≡ n ≤
log(|d|) + log(9

4)

log(3π
4 )

and hence:
n ≤ C log(|d|)

for some constant independent of K.

Proof. In the previous corollary we have N(b) ≥ 1 and hence:

|d| ≥
(π

4

)2r2 n2n

(n!)2
≥
(π

4

)n n2n

(n!)2
=: an

and hence using the binomial formula we get:

an+1

an
=
π

4

(
1 +

1

n

)2n

≥ π

4

(
1 + 2n

1

n
+ ≥ 0

)
≥ 3π

4

and thud:

|d| ≥ π2

4

(
3π

4

)n−2

=
π

3

(
3π

4

)n−1

As an obvious consequence we get:

Theorem 3.21 (Hermite-Minkowski). For every number field K 6= Q we have that |dK/Q| ≥ 2

Theorem 3.22. For every number field K/Q the class number LK = |ClK | is finite

Proof. It suffices to show that for every integer N ≥ 1 there are only finitely many ideals b ⊂ OK
with N(b) = N . Since |OK/b = N(b) = N | we have that N = 0 ∈ OK/b i.e. NOK ⊂ b. Now let
P1 · · ·Pr be the the prime decomposition of NOK into prime ideals. Then the possible ideals b are
precisely the partial products of the ideals Pi and thus there are only finitely many.

Theorem 3.23 (Hermite). There are only finitely many number fields for a given discriminant.

Proof. Fix some d ∈ Z, then if dK/Q = d there are only finitely many possibilities of n = degK/Q
and hence for r1, r2. Therefore it suffices to prove the following assertion:
Given d, n, r1, r2 there are only finitely many number fields K with:

dK/Q = d, deg(K/Q) = n, r1(K) = r)1, r2(K) = r2

To see this consider the following subset B ⊂ Rr1 × Cr2 :

1.Case If r1 ≥ 1 set:

B =

{
(x, z) ∈ Rr1 × Cr2 | |y1| ≤ 2n

(
2

π

)r2
|d|1/2, |yi| ≤

1

2
i > 1, |zj | ≤

1

2
j ≥ 1

}
2.Case If r1 = 0 set:

B =

{
z ∈ Cr2 | |Im(z!)| ≤ 2n

(
2

π

)r2−1

|d|1/2, |Re(z1)| ≤ 1

4
, |zj | ≤

1

2
2 ≤ j ≤ r2

}
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then B is closed, convex and centrally symmetric of Lebesgue measure:

λ(B) = 2n+1−r2 |d|1/2

Now let σ : K ↪−→ Rr1 × Cr2 be the canonical embedding. We have that:

vol(σ(OK)) = 2−r2 |d|1/2

and hence:
λ(B) = 2n+1vol(σ(OK)) > 2nvol(σ(OK))

Then there exists some 0 6= x ∈ OK with σ(x) ∈ B.
Claim 1: K = Q(x)
(This is equivalent to asking that σi(x) 6= σj(x) for i 6= j )

1.Case If r1 ≥ 1 consider the inequality:

1 ≤ |N(x)| =
n∏
i=1

|σ(x)|

by definition of B we have that σi(x) ≤ 1/2 for i ≥ 2 and hence we get:

|σ1(x)| ≥ 2n−1 ≥ 1

Thus σ1(x) 6= σi(x) for all i ≥ 2. Now take a Galois extension K ⊂ L ⊂ C, then applying the
automorphisms of L to the inequalities we find that:

σν(x) 6= σµ(x)

for all ν 6= µ and hence x is primitive.

2.Case If r1 = 0 we may assume that in our ordering σ1, . . . , σn we have that σ2 = σ̄1. By definition
of B we then have σi(x) ≤ 1/2 for 3 ≤ i ≤ n and so we get that:

|σ1(x)2| = |σ1(x)||σ2(x)| ≥ 2n−2 ≥ 1

and hence |σ1(x)| = |σ2(x)| ≥ 1 and therefore σ1(x) 6= σi(x) for 3 ≤ i ≤ n. Thus it remains
to show that σ1(x) 6= σ2(x) = σ̄1(x). By definition of B we have that Re(σ1(x)) ≤ 1/4.
Since |σ1(x)| ≥ 1 we see that σ1(x) 6= Re(σ1(x)) i.e. that σ1(x) /∈ R ans so σ1(x) 6= σ̄1(x) as
claimed.

Using Claim 1 the theorem will follow from:
Claim 2: Given d, n, r1, r2 the set of algebraic integers x ∈ C which arise from the construction
above is finite.
Indeed: By construction of our set B there is a constant C(d, n, r2) such that |σi(x)| ≤ C for all
1 ≤ i ≤ n. Consider the minimal polynomial of x:

mx(T ) =

n∏
i=1

(T − σi(x)) =

n∑
ν=0

cνT
ν

with cν ∈ Z since x ∈ OK . Furthermore these cν are the elementary symmetric functions of
σ1(x), . . . , σn(x). Hence there is another constant D = D(d, n, r2) such that |cν | ≤ D for all
0 ≤ ν ≤ n. Hence there are at most (2D + 1)n+1 possibilities for mx(T ) and hence for x.

Next we study the structure of the group of units O×K for a number field K. The basic result is
this:
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Theorem 3.24 (Dirichlet’s unit theorem). For a number field K set r = r1 +r2−1 Then we have:

O×K
∼= µK × Zr

Where µK is the finite cyclic group of roots of unity in K. Thus there are r units η1, . . . , ηr ∈ OK
such that every unit u ∈ O×K has a unique representation of the form:

u = ζηn1
1 . . . ηnrr , ni ∈ Z, ζ ∈ µK

Remark 3.25. Except in special cases there are no known explicit formulas for the generators of
the free part (called fundamental units)

Example 3.26. 1. K imaginary quadratic r = 0 + 1− 1 = 0, hence O×K = µK

2. K real quadratic, r = 2 + 0− 1 = 1 hence:

O×K
∼= µK × Z = {±1} × Z

3. K = Q(ζp) for p ≥ 3 and ζp a primitive p-th root of unity. Then r1 = 0, r2 = p−1
2 i.e. r = p−3

2
and therefore:

O×K
∼= µ2p × Z

p−3
2

Proof. We first show that O×K is a finitely generated abelian group and then we determine the rank.
For this consider the so called logarithmic embedding :

L : K× → Rr1+r2

L(x) = (log(|σ1(x)|), . . . , log(|σr1+r2(x)|)

which one obtains from the canonical embedding σ.

Claim 1 Let B ⊂ Rr1+r2 be bounded, then the set:

B′ := L−1(B)

is finite

Proof. Since B is bounded there exist ε > 0, C > 0 such that for all x ∈ Bp we have:

ε ≤ |σi(x)| ≤ C

for i = 1, . . . , r1 + r2 and hence for all i = 1, . . . , n. Now let:

mx(T ) =

dx∑
ν=0

cνT
ν

be the minimal polynomial of x. Then we have that:

(a) dx ≤ n = deg(K/Q)

(b) mx(T ) ∈ Z[T ] since x ∈ OK

(c) There is a constant D = DK,B such that

|cν | ≤ D for 0 ≤ ν ≤ dx

since the cν are the elementary symmetric functions of a subset of σ1(x), . . . , σn(x, y).
Hence there are only finitely many possibilities for mx(T ) so also for x.

26



Consequences:

(a) The subgroup Γ = L(O×K ⊂ Rr1+r2 is discrete

(b) kerL = µK is a finite cyclic subgroup of O×K

Proof. ad (a): Fix a norm on Rr1+r2 . for v ∈ Γ the ε = 1 ball U1(v) contains only finitely
many elements of Γ by Claim 1. For small enough 0 < ε ≤ 1 we therefore have:

Uε(v) ∩ Γ = {v}

thus Γ is discrete.
ad (b): For B = {0} Claim 1 asserts that the following subgroup of O×K is finite:

{x ∈ O×K | L(x) = 0}

{x ∈ O×K | |σi(x)| = 1 for all 1 ≤ i ≤ n}
Hence:

ker(L|O×K ⊂ µK)

since all elements have finite order. ON the other hand for ζ ∈ µK we have in fact ζ ∈ O×K
since ζ, ζ−1 are roots of the monic polynomial Tn−1. Moreover σi(ζ) is again a root of unity
in C and thus |σi(ζ)| = 1 for all i i.e. we see that ζ ∈ ker(L|O×K ). So in conclusion

ker(L|O×K ) = µK

and this group is finite. Furthermore all finite subgroups of K× are cyclic.

Now the discrete subgroup Γ = L(O×K) ⊂ Rr1+r2 is free of rank ≤ r1 + r2. Since µK ⊂ O×K is
finite and L induces an isomorphism:

O×/µK
∼−→ Γ

the abelian group O×k is finitely generated of rank ≤ r1 + r2 with torsion part µK . In fact
more is true:

1. Claim 2: We have rkO×K ≤ r1 + r2 − 1 = r

Proof. For x ∈ O×K we know that:

NK/Q(x) ∈ Z×{±1}

1 =
n∏
i=1

|σi(x)| =
r1∏
i=1

|σi(x)|
r1+r2∏
i=r1+1

|σi(x)|2

and therefore:

0 =

r1∑
i=1

log(|σi(x)|) + 2

r2+r1∑
i=r1+1

log(σi(x))

Thus the discrete subgroup Γ = L(O×K) lies in the hyperplane:

W =

{
y ∈ Rr1+r2 |

r1∑
i=1

yi + 2

r1+r2∑
i=r1+1

yi = 0

}

Since Γ is discrete in Rr1+r2 it also discrete in W and we get that:

rkΓ ≤ dimW = r = r1 + r2 − 1
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Claim 3 In fact rkO×K = rkΓ = r i.e. Γ is a lattice in W . This will follow from:

Claim 3∗ For any 0 6= φ ∈ W∨ there exists some u ∈ O×K with φ(L(u)) 6= 0 Indeed: Suppose we have
shown this and denote by 〈Γ〉 = W the R-subvectorspace generated by Γ. Since Γ is a discrete
subgroup in W we know that:

rk = dimR〈Γ〉

Now if rkΓ < r (i.e. Clam 3 is wrong), then W/〈W 〉 6= 0 and hence there is a surjective linear
map:

ψ : W/〈Γ〉 → R

The composition:

φ : W →W/〈Γ〉 ψ−→ R

is again surjective hence defines nonzero element in W∨ such theta φ(Γ) = 0. Hence by Claim
3∗ there exists γ = L(u) ∈ Γ such hat φ(γ) 6= 0 which is a contradiction. Thus Claim 3 holds
in this case.

Proof of Claim 3∗. For any 0 6= φ ∈ W∨ there are c1, . . . cr ∈ R where r = r1 + r2 − 1 and
(c1, . . . cr) 6= 0 such that:

φ(y) = c1y1 + · · ·+ cryr for all y ∈W

Since we had:
r1∑
i=1

yi + 2

r1+r2∑
i=r1+1

yi = 0

Now fix α ∈ R with α > 2nvol(σ(OK))/2r1πr2 . For λ = (λ1, . . . , λr ∈ Rr>0) define λr1+r2 =
λr+1 > 0 by the formula:

r1∏
i=1

λi

r1+r2∏
j=r1+1

λ2
j = α

IN Rr1 × Cr2 consider the set:

Bλ = {(y1, . . . , yr1 , z1, . . . , zr2 | |yi| ≤ λi, |zj | ≤ λr1+j)}

which is a product of intervals and discs, compact, convex and centrally symmetric. Now e
have that:

vol(Bλ) =

r1∏
i=1

2λi

r1+r2∏
i=r1+1

πλ2
i = 2r1πr2α > 2nvol(σ(OK))

Then by Minkowski’s theorem we get that there exists some 0 6= xλ ∈ OK with σ(xλ) ∈ Bλ
i.e. :

|σi(xλ)| ≤ λi for 1 ≤ i ≤ n

where λj+r2 := λj for j = r1 + 1, . . . , r1 + r2. Since 0 6= xλ ∈ OK we have NK/Q(xλ)Z \ 0 and
hence:

1 ≤ |NK/Q(xλ)| =
n∏
i=1

|σi(xλ)| ≤
n∏
i=1

λi =

r1∏
i1

λi

r1+r2∏
j=r1+1

λ2
j = α

And thus:

|σi|(xλ) = |NK/Q(xλ)|
∏
j 6=i
|σj(xλ)|−1 ≥

∏
j 6=i

λ−1
j =

λi
α

so we see that:

λi
α
≤ |σi(xλ)| ≤ λi
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This implies the inequalities:

0 ≤ log(λi)− log(|σi(xλ)|) ≤ log(α)

and hence:

|φ(L(xλ))−
r∑
i=1

ci log(λi)|

= |
r∑
i=1

ci(log|σi(xλ)| − log(λi)|

≤
r∑
i=1

|ci| log(α) < β

For some β > 0 which is independent of λ ∈ Rr>0 For every ν ∈ Z≥1 choose real numbers:

λ
(ν)
1 , . . . λ(ν)

r > 0

such that:
r∑
i=1

ci log(λ
(ν)
i ) = 2νβ

and set λ(ν) = (λ
(ν)
1 , . . . , λ

(ν)
r )inRr>0 and let x(ν) ∈ OK \ {0} as above. Then:

|φ(L(x(ν))− 2νβ)| < β

and hence:

(2ν − 1)β < φ(L(x(ν))) < (2ν + 1)β

In particular, for all ν ≥ 1 the numbers φ(L(x(ν))) are pairwise different. The estimate:

N(x(ν)) = |NK/Q(x(ν))| ≤ α

shows that there are only finitely many ideals of the form (x(ν)). (In the proof of the finiteness
of the class number we showed that there are only finitely many ideals α ∈ OK with N(a) ≤ C
for any constant C). Hence there exists 1 ≤ ν < µ such that:

(x(ν)) = (x(µ))

and therefore there is a unit u ∈ O×K with x∗µ = ux(ν). Finally we find that:

φ(L(u)) = φ(L(x(µ)))− φ(L(x(ν))) 6= 0

proving Claim 3∗

And hence the theorem is proven.
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4 Decomposition Laws

Consider the following situation:

L

B K

A

Where A is a Dedekind Domain with quotient field K, L/K a finite field extension and B the
integral closure of A in L.

Proposition 4.1. In this situation B is a Dedekind domain which is finitely generated as an
A-module

Proof. Omitted, since in our application we have that OK = A, B = OL and the assertions are
known

For a prime ideal Q 6= 0 in A consider the ideal QB. Since B is a Dedekind domain we have
that:

QB = Pe1
1 · · ·P

er
r

for pairwise different prime ideals P1, . . . ,Pr in B and ei ≥ 1. We want to study this decomposition.

Corollary 4.2. For a Noetherian integral domain A every localization S−1A is Noetherian.

Proposition 4.3. R an integral domain, A ⊆ R a subring. Let B be the integral closure of A in
R and S ⊆ A a multiplicative subset. Then S−1B is the integral closure of S−1A in S−1R.

Proof. For x ∈ S−1B write x = b
s with b ∈ B and s ∈ S. We can find ai ∈ A such that:

bn + an−1b
n−1 + · · ·+ a0 = 0

dividing by sn gives:
(b/s)n + an−1/s(b/s)

n−1 + · · ·+ a0/s = 0

and hence x = b/s is integral over S−1A
Conversely if y = r/s ∈ S−1R with y ∈ R, s ∈ S is integral over S−1A, we have:

(r/s)n + an−1/sn−1(r/s)n−1 + · · ·+ a0/s0 = 0

for some ai ∈ A and si ∈ S. Multiplying with (ss0 · · · sn−1)n shows that rs0 · · · sn−1 is integral over
A, and hence it is in B. Thus:

y =
r

s
=
rs0 · · · sn−1

ss0 · · · sn−1
∈ S−1B

Taking R = K = Quot(A) we get:

Corollary 4.4. If A is integrally closed then every localization S−1A is also integrally closed.

Putting everything together we get:

Corollary 4.5. If A is a Dedekind ring then every localization S−1A is also a Dedekind ring.

The following result sometimes allows us to reduce questions about Dedekind rings to questions
about principal ideal domains.
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Corollary 4.6. Let A be a Dedekind Ring, P 6= 0 a prime and S = A \P. The localization AP :=
S−1A is a PID which has only one non-zero prime ideal given by m = pAp. Any element π ∈ AP

which m = (π) is a prime element. The nonzero ideals a of AP have the form a = Pm = (πm) for
some uniquely determined n ≥ 0 .

The next proposition concerns the behavior of localization with respect to quotients (They
commute).
we now return to the situation A,B,K,L above.
For a prime ideal p in A consider the prime decomposition:

(∗) pB =

r∏
i=1

Pei
i

Fact: The Pi’s are exactly the prime ideals in B “lying above” p i.e. with Pi ∩A = p

Proof. Indeed if P ⊆ pB then p ⊆ pB ∩ A ⊆ P ∩ A. Then since P ∩ A 6= A and p is maximal we
have p = P ∩A. Conversely if P ∩A = p then p ⊆ P hence pB ⊆ P and the claim follows.

Convention: One usually writes P | p in this case.
We now introduce an important invariant for non-zero prime ideals P | p:
The inclusion A→ B induces a field extension:

A/p→ B/P

and a map:
A/p→ B/pB

Since B is a finitely generated A-module B/P and B/pB are finite dimensional A/p-vector spaces.

Definition 4.7. We call:
f = f(P/p) := dimA/pB/P

the inertia degree of P over p. In the decomposition (∗) we set fi = f(Pi/p). The exponent
ei = e(Pi/p) is called the ramification index of Pi/p.

Theorem 4.8. (Degree formula) With the above notation we have:

deg(L/K) = dimA/pB/pB =

r∑
i=1

eifi

Proof. We begin with the second equality. Writing:

pB = q1 . . . qs

with prime ideals qj of B we have to show that:

dimA/pB/pB =

s∑
j=1

= f(qj | p)

Consider the inclusions:
pB = q1 · · · qs ⊂ · · · ⊂ q1q2 ⊂ q1 ⊂ B

give short exact sequences of A/P-vector spaces:

0→ a/aqj → B/q1 · · · qj → B/q1 · · · qj−1 → 0

where a = q1 · · · qj−1. Thus we get:

dim(B/q1 · · · qj) = dim(B/q1 · · · qj−1) + dim(a/aqj)
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As a B/qj-vector space a/aqj is 1-dimensional (c.f. the argument that the norm is multiplicative:
There are no proper ideals between aqj ⊂ a). Hence a/aqj ∼= B/qj has dimensions f(qj | p) as an
A/p-vector space. Thus:

dim(B/q1 · · · qj) = dim(B/q1 · · · qj−1) + f(qj | p)

Hence the first claim follows inductively.
Set n = deg(L/K). It remains to show that :

dimA/pB/pB = n

First assume that A is a principal ideal domain. Then the finitely generated, torsion free A-module
B is a free module of rank n. Let x1, . . . , xn be an A-basis of B. Then x̄1, . . . , x̄n where x̄i = xi+pB
is and A/p-basis of B/pB. Indeed: Clearly these generate B/pB. Moreover since A is a PID we
have p = (π) for some π ∈ A. Assume that:

n∑
i=1

λ̄ix̄i = 0

for certain λ̄i ∈ A/p. Thus:
n∑
i=1

λixi = πb for some b ∈ B

moreover we can write:

b =

n∑
i=1

µixi for µi ∈ A

and hence:
n∑
i=1

(λi − πµi)xi = 0 ∈ B

so since the xi were a basis λi − πµi = 0 and thus:

λ̄i = π̄µ̄i = 0 ∈ A/p

So the x̄i form a basis as well. Hence we’ve shown that:

dimA/pB/pB = n

Now let A be a general Dedekind Ring, then we reduce to the PID case by localizing: Let S = A\p
and consider:

Ap := S−1A and Bp := S−1B

Then Ap is a PID with quotient field K and integral closure Bp in L. Since pAp is the unique
non-zero prime ideal of Ap, we have seen that:

dimAp/p
(Bp/pBp) = n

Furthermore we know that the inclusion A ↪−→ Ap induces an isomorphism:

A/p
∼−→ Ap/pAp

Hence it suffices to show that the inclusion B ↪−→ Bp induces an isomorphism of A/p-vector spaces:

ϕ : B/pB
∼−→ Bp/pBp

Clear: ϕ is an A/p-linear map.
Injectivity: We have to show that pBp∩B = pB. Need to show “⊂”. Indeed for c ∈ B with c ∈ pBp
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we can write c = x
s with x ∈ pB, s ∈ S = A \ p. Since s ∈ A, s 6∈ p we have (s) + p = A, hence

there exists some a ∈ A, p1 ∈ p with:
sa+ p1 = 1

and thus:
(∗) c = csa+ cp1

and so:
c =

x

s
sa+ cp1 = xa+ cp1 ∈ pB

Surjectivity: Consider y = c
s ∈ BP, c ∈ B, s ∈ S. Using ∗ we get:

y =
csa

s
+
cp1

s
= ca+ p1

c

s
≡ ca mod pBp

Thus y mod pBp = ϕ(ca mod pB) is in the image of ϕ and hence ϕ is surjective.

Example 4.9. Let K/Q be a quadratic extension, p a prime number then:

pOK = Pe1
1 · · ·P

er
r

Since
∑r

i=1 fiei = deg(K/Q) = 2 we have three possibilities:

1. r = 1, f1 = 1, e1 = 2 then p is called ramified pOK = P2

2. r − 1f1 = 2, e1 = 2 then p is called inert and pOK = p r = 2, f1 = f2 = 1, e1 = e2 = 1 the p
is called decomposed with:

pOK = P1P2, P1 6= P2

Example 4.10. for N ≥ let µN be the group of N -th roots of unity in an algebraic closure Q̄ of Q.
Then µN is a finite subgroup of Q̄× and hence cyclic (or order N). A generator ζ of µN is called a
primitive N -th root of unity. It induces an isomorphism Z/N ∼−→ µN . The primitive roots of unity
in µn correspond to (Z/N)×. Hence there are φ(N) := |(Z/N)×| primitive N -th roots of unity in
Q̄. Now let p be a prime number, n ≥ 1 and consider N = pn. In this case:

e := φ(pn) = pn − pn−1 = pn−1(p− 1)

The primitive pn-th roots of unity are the roots of the cyclotomic polynomial:

F (X) =
Xpn − 1

Xpn−1 − 1
= Xpn−1(p−1) +Xpn−1(p−2) + · · ·+ 1

=
∏

k∈(Z/pn)×

(X − ζk)

where ζ is a chosen pn-th root of unity. We have F (1) = p and hence:

p =
∏

k∈(Z/p)×
(1− ζk) = NQ(ζ)/Q(1− ζ)

Let B be the ring of integers of Q(ζ). We have µpn ⊆ B and hence 1− ζk ∈ B for all k.
Claim: (1− ζi)B = (1− ζj)B for all i, j ∈ (Z/pn)×

Indeed, let k = ij−1 in (Z/pn)×, then:

1− ζi = 1− (ζj)k = (1− ζj)(1 + ζj + · · ·+ (ζj))k̃−1

where k̃ ∈ Z is a lift of k. Therefore we get:

1− ζi ∈ (1− ζj)B =⇒ (1− ζi)B ⊆ (1− ζj)B
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the claim follows by interchanging i and j. Hence we get:

pB = (1− ζ)eB = ((1− ζ)B)e

consider the prime ideal decomposition:

pB = Pe1
1 · · ·P

er
r

It follows that e | ei for all i. Hence e = φ(pn) = deg(Q(ζ)/Q) =
∑r

i=1 eifi ≥ re It follows that
P = (1− ζ)B is a prime ideal of B of inertia degree 1 and the decomposition of pB in B is:

Bp = Pe = (1− ζ)e , e = φ(pn)

(p is totally ramified in Q(ζpn))

Remark 4.11. We will see later that B = Z[ζpn ]

We now give an explicit method to determine the prime ideal decomposition explicitly in our
usual K,L,A,B situation p a prime ideal in A where L/K is separable and L = K[θ] with θ ∈ B.
Let P (X) be the minimal polynomial of θ over K. We know that:

P (X) ∈ A[X]

The method will apply to all prime ideals p of A which are prime to the so called conductor f of
the subring A[θ] in B. The conductor is by definition the biggest ideal of B which is contained in
A[θ]. Explicitly:

f = {α ∈ B | αB ⊆ A[θ]}
Note: If B = A[θ] then f = (1) = B and then our method will apply Ci all p.
Here’s the method:

Theorem 4.12. Let p 6= 0 be a nonzero prime ideal of A with p - f ∩A. Let:

P̄ (X) = P̄1(X)e1 · · · P̄r(X)er

be the decomposition of:
P̄ (x) := P (X) mod p ∈ A/p[X]

into a product of monic irreducible factors which are pairwise different. Choose monic polynomials
Pi(X) ∈ A[X] with:

P̄i(X) = Pi(X) mod p

Then Pi = pB + Pi(θ)B for 1 ≤ i ≤ r are the r pairwise different prime ideals in B lying over
p. Moreover we have:

fi = f(Pi | p) = deg P̄i(X)

and:
pB = Pe1

1 · · ·P
er
r

Without knowing B explicitly it is difficult to determine f . However we have the following
information:

Lemma 4.13. In the situation of the theorem let dθ = d(1, θ, . . . , θn−1) ∈ A beg the discriminant
of the basis 1, θ, . . . , θn−1 of L = K(θ), then f | dθB. In particular, for all prime ideals p of A with
p - (dθ) we have p - f ∩A

Proof. We have already shown that we have an inclusion:

dθB ⊆ A+ θA+ · · ·+ θn−1A = A[θ]

Hence dθ ∈ f i.e. f | dθB. we have inclusions:

(dθ) = dθA ⊆ dθB ∩A ⊆ f ∩A

Thus if p - (dθ) we have p - f ∩A as claimed.
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Example 4.14. A = Z,K = Q, L = Q( 3
√

2), B = OL choose θ = r
√

2 ∈ B. Then P (X) = X3 − 2,
we’ve seen that:

dθ = −108 = −22 · 33

Hence all prime ideals p = pZ for p 6= 2, 3 are prime to the conductor f of Z[θ]

1. For p = 7 we have:
P̄ (X) = X3 − 2̄ ∈ F7[X]

which is irreducible since there are no third roots of 2 ∈ F7. Thus r = 1, e1 = 1, f1 =
deg(P̄ (X) = 3)

P = 7OL + P (θ)OL = 7OL

so 7OL is prime and OL/P = F73

2. For p = 11 the polynomial:
P̄ (X) = X3 − 2̄ ∈ F11[X]

has a root, namely −4̄. Hence:

X3 − 2̄ = (X + 4̄)(X2 + aX + b)

One finds that a = −4̄ and b = 5̄ hence:

X3 − 2̄ = (X + 4̄)(X2 − 4̄X + 5̄)

Where the second factor is irreducible since it has no roots in F11 Thus r = 2 and:

11OL = P1P2

where:
P1 = (11,

3
√

2 + 4), f1 = 1

P2 = (11,
3
√

4− 4
4
√

2 + 5), f2 = 2

For the proof of our theorem we need the following:

Lemma 4.15. Let R =
∏n
i=1Ri be a ring, then the prime ideas q of R have the form:

q = R1 × · · · × qi × · · · ×Rn = π−1
i (qi)

for some i and some prime ideal qi of Ri. Here πi : R → Ri is the projection. It induces an
isomorphism:

R/q
∼−→ Ri/qi

Proof of the Theorem. Let p - f ∩A be a prime ideal as in the theorem.

Claim 1: The inclusion C = A[θ] ↪−→ B induces an isomorphism:

(∗) C/pC
∼−→ B/pB

Proof. If a prime ideal P of B divides pB and f then:

p = P ∩A | f ∩A

which is a contradiction. Hence pB and f are coprime, i.e. pB + f = B. By definition we have
f ⊆ C and therefore pB + C = B. Thus the canonical map C → B/pB is surjective. Its kernel is
pB ∩ C and for injectivity of (∗) it remains to show that pB ∩ C = pC. Only need to show “⊆”:
By p - f ∩A we know that p + (f ∩A) = A (since p is maximal). Hence A ⊆ p + f and therefore:

pB ∩ C ⊆ (p + g)(pB ∩ C) ⊆ pC + pfB ⊆ pC

Where the last inclusion holds since fB ⊆ f ⊆ C.
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The projection A→ Ā = A/p induces surjective ring maps:

A[X]→ Ā[X] = A[X]/p(X), Q 7→ Q̄

A[X]/P (X)→ Ā[X]/(P̄ (X))

Claim 2: The surjective composition:

C = A[θ]
∼−→ A[X]/P (X)→ Ā[X]/P̄ (X)

induces an isomorphism:

C/pC
∼−→ Ā[X]/P̄ (X)

Proof. The kernel consists of those elements Q̄(X)in(P̄ (X)) which is equivalent to Q̄(X) = P̄ (X) =
S̄(X) for some S̄ ∈ Ā[X] i.e. Q(X) = P (X)S(X) + T (X) for some S ∈ A[X] and T ∈ p(X)
i.e. Q(θ) = T (θ) for some T ∈ p(X) i.e. Q(θ) ∈ p(θ) = pC

By these two claims the following map is an isomorphism:

Ā[X]/P̄ (X)
∼−→ B/pB

Q̄ mod P̄ (X) 7→ Q(θ) mod pB

The Chinese remainder theorem gives an isomorphism:

R := Ā[X]/P̄ (X)
∼−→

r∏
i=1

Ā[X]/p̄i(X)ei

Now let qi be a prime ideal of Ri = Ā[X]/P̄i(X)ei . Its inverse image in Ā[X] is a prime ideal q̃i
which contains (P̄i(X)ei). It follows that in fact P̄i(X) ⊆ q̃i and hence q̃i = (P̄i(X)) since P̄i(X) is
maximal in Ā[X]. Thus Ri has a unique prime ideal:

qi = (P̄i(X) mod (P̄i(X)ei))

Its inverse image in R is the prime ideal (πi) where:

πi = P̄i(X) mod (P̄ (X))

Now using our Lemma we get the following:

(a) The prime ideals of R are the ideals (πi)

(b) R/(πi)
∼−→ Ā[X]/P̄i(X) and in particular:

dimĀR/(πi) = deg P̄i(X)

(c)
⋂r
i=1(πeii ) = 0

Using the above isomorphism:
R = Ā[X]/P̄ (X)

∼−→ B/pB

Q̄ mod P̄ (X) 7→ Q(θ) mod pB

we get:

1. The prime ideals of B̄ := B/pB are the principle ideals P̄i = (Pi(θ)) where Pi(θ) :=
Pi(θ) mod pB ∈ B̄

2. dimĀ B̄/P̄i = deg P̄i(X)
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3.
⋂r
i=1 P̄

ei
i = 0

The inverse image of P̄i under the projection B → B̄/pB is the prime ideal:

Pi = pB + Pi(θ)B

where Pi ∈ A[X] is any polynomial lifting P̄i. The (prime) ideals of B̄ correspond bijectively to
the (prime) ideals of B which contain pB hence:

1. The Pi’s are exactly the pairwise different prime ideals lying over p.

2. fi = dimA/pB/Pi = dimĀ B̄/Pi = deg P̄i(X)

3. pB = Pe1
1 · · ·Per

r

(Still need to do some work for the last statement, I was too tired)

Special cases of the decomposition of a prime:

pB = Pe1
1 · · ·P

er
r

Let n = deg(L/K) then:
r∑
i=1

eifi = n

1. If r = n i.e. ei = fi = 1 for all i then p is called completely decomposed in B (L)

2. The prime ideal Pi is called unramified if ei = 1 and if the field extension:

A/p→ B/Pi

is separable (For extensions of number fields A = OK , B = OL is always satisfied since the
quotients are finite.)

3. If ei > 1 then Pi is called ramified and if additionally fi = 1 then it is called purely ramified.

4. pi is called unramified if all the Pi are unramified. Otherwise p is called ramified and one
says that “p ramifies in B”

We have that:

Theorem 4.16. If L/K is separable then only finitely many prime ideals p of A ramify in B.

Proof. Since L/K is finite and separable we can find some θ ∈ OL such that L = K[θ]. Now let
P (X) be the minimal polynomial of θ and dθ ∈ A the discriminant of the basis 1, θ, . . . , θn−1. Let
L̃ be the Galois closure of L/K. There are n pairwise different embeddings σi : L ↪−→ L̃ over K and
the images θi = σi(θ) ∈ L̃ are pairwise different. Let B̃ be the integral closure of A in L̃. Then
B ⊆ B̃ and θi ∈ B̃ for all i. Hence we get a factorization:

P (X) =
n∏
i=1

(X − θi) ∈ B̃[X]

and moreover:

dθ =
∏
i<j

(θi − θj)2 ∈ A

choose a prime ideal P̃ of B̃ over p. then the polynomial:

P̄ (X) ∈ A/p[X]
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decomposes into linear factors in the extension field B̃/P̃ of A/p namely:

P̄ (X) =
n∏
i=1

(X − θ̄i) ∈ B̃/P̃[X]

We have:
d̄θ = dθ mod p =

∏
i<j

(θ̄i − θ̄j)2 ∈ A/p

Claim: If p - (dθ) then p is unramified in B.

Indeed. Since p - (dθ) we know how to compute the prime ideal decomposition of pB. in the
decomposition of P̄ (X) ∈ A/p[X] into irreducible factors:

P̄ (X) = P̄1(x)e1 · · · P̄r(X)er

all ei = 1 since p - (dθ) =⇒ d̄θ 6= 0 ∈ A/p and hence the θ̄i ∈ B̃/P̃ are pairwise different. Hence
P̄ (X) decomposes into pairwise different linear factors over B̃/p̃ and hence:

pB = P1 · · ·Pr, i.e. ei = 1

Fix Pi over p and let θ̄ = θ mod Pi in B/Pi. The above argument for some P̃ over Pi shows
that θ̄ is a zero of a polynomial over A/p which has only simple roots. Hence θ̄ is separable and
therefore so is:

(∗) A/p[θ] = B/Pi

Indeed consider the composition:
A[θ] ↪−→ B → B/Pi

since p - (dθ) =⇒ p - f and therefore A[θ] + pB = B and thus A[θ] + Pi = B, so this map is
surjective. Thus the equality (∗) holds and we are done.

We have the following more precises assertion:

Theorem 4.17. (a) Let D be the ideal of A which is generated by the discriminants of all bases
of L/K contained in B. Then a prime p of A ramified in B if and only if p | D

(b) For A = Z, K = Q and a number field LQ the prime ideal (p) = pZ ramifies in OL if and
only if p | dL/Q

Assertion (b) is a special case of (a) because OL is a free Z-module and hence D = (dL/Q)

Proof. Omitted

Corollary 4.18. Let L 6= Q be a number field, then there is at least one prime number p such that
(p) is ramified in OL.

Proof. We’ve seen that |dL/Q| ≥ 2 and hence dL/Q has a prime divisor p. Then by our theorem p
ramified in L.
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5 Decomposition Laws in Quadratic Fields

K/Q quadratic field there exists d ∈ Z, d 6= 1 d not divided by a square with Q(
√
d). The

discriminant is:

D =

{
4d, d 6≡ 1 mod 4

d, d ≡ 1 mod 4

Set θ = D+
√
D

2 then we always have OK = Z[θ]. Moreover set θ′ = D−
√
D

2 then the minimal
polynomial of θ over Q is given by:

P (X) = (X − θ)(X − θ′) = X2 − Tr(θ)X +N(θ)

= X2 −DX +
D(D − 1)

4
∈ Z[X]

= (X − D

2
)2 − D

4
∈ Q[X]

Since OK = Z[θ] the conductor of Z[θ] in OK is trivial and we can compute the decomposition of
all primes p ∈ Z. There are three possibilities:

1. pOK = P2 ramified

2. pOK = P1P2 decomposed

3. pOK = P inert

Fix a prime p 6= 2, then a ∈ Z is called a quadratic residue mod p if p - a and a is a square in Z/p

Theorem 5.1.

(a) p is ramified in K iff p | D
(b) p is decomposed iff either p 6= 2 and D (equiv d) is a quadratic residue mod p or p = 2 and
D ≡ 1 mod 8 (or equiv d)

(c) p is inert in K if either p 6= 2 and D is a quadratic non-residue mod p or p = 2 and D ≡ 5 mod 8
(or equivalently d)

Proof. The assertions for d follow from those for D. We know that p is ramified if and only if
P̄ (X) = P (X) mod p ∈ Fp[X] has multiple zeroes, i.e. since D = (θ − θ′)2 iff D̄ = D mod p = 0
i.e. p | D. Now assume that p - D. Then p is decomposed iff P̄ (X) decomposes into linear factors
in Fp[X] i.e. iff P̄ (X) has a root in Fp:
Assume p 6= 2, then 2 ∈ F×p and hence:

P̄ (X) = (X̄ − D̄/2)2 − D̄/4 ∈ Fp[X]

thus P̄ (X) has a root in Fp iff D̄/4 (or equivalently D̄) is a square F×p .
Now Assume p = 2, thus 2 - D =⇒ D = d ≡ 1 mod4 and hence D ≡ 1, 5 mod8. For D ≡ 1 mod 8
we have:

P̄ (X) = X2 +X = X(X + 1) ∈ F2[X]

and hence p = 2 is decomposed. On the other hand for D ≡ 5 mod 8 we get:

P̄ (X) = X2 +X + 1 ∈ F2[X]

which has no roots in F2. Hence P̄ is irreducible i.e. p = 2 is inert.
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6 Quadratic reciprocity

Proposition 6.1. For a prime p 6= 2 the subgroup:

(F×p )2 :=
{
x2 | x ∈ F×p

}
is a subgroup of index 2 in F×p . It is the kernel of the homomorphism:(

−
p

)
: F×p → µ2, x 7→

(
x

p

)
:= x

p−1
2

i.e. we have an exact sequence:

1→ (F×p )2 → F×p

(
−
p

)
−−−→ µ2 → 1

Proof. Since F×p ∼= Z/(p− 1)Z and since p is odd this follows from the exact sequence:

0→ 2Z/(p− 1)Z→ Z/(p− 1)Z
p−1
2−−→
(
p− 1

2

)
Z/(p− 1)Z→ 0

Remark 6.2. 1.
(
x
p

)
is called the Legendre symbol of x over p. we set

(
0
p

)
:= 0 so we have(

x
p

)
= 1 ⇐⇒ x ∈ (F×p )2

For a ∈ Z write: (
a

p

)
:=

(
a mod p

p

)
∈ {±1, 0}

Then
(
a
p

)
= 1 ⇐⇒ a is a quadratic residue mod p

2.
(
−
p

)
is multiplicative.

3. For x ∈ F×p , if y2 = x for some y ∈ F̄p then:(
x

p

)
= yp−1

since yp−1 = (y2)
p−1
2 = x

p−1
2

We now look at the special cases x = 1,−1, 2 ∈ F×p .
the following maps are homomorphisms:

ε : (Z/4)× → Z/2, ε(n mod 4) =
n− 1

2
mod 2

ω : (Z/8)× → Z/2, ω(n mod 8) =
n2 − 1

8
mod 2

Proposition 6.3. For p 6= 2 we have:

1.
(

1
p

)
= 1

2.
(
−1
p

)
= (−1)ε(p)

3.
(

2
p

)
= (−1)ω(p)
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Proof. (1) and (2) are clear by definition. Let ζ be a p-th primitive root of unity in F̄p i.e. ζ8 =
1, ζ4 = −1. Since f(X) = Xn − 1 has no multiple roots in F̄p. For y = ζ + ζ−1 we have y2 = 2.
Applying the Frobenius automorphism x 7→ xp of F̄p we get:

yp = ζp + ζ−p

For p ≡ ±1 mod 8 we get ζp = ζ±1 hence yp = y hence:(
2

p

)
= yp−1 = 1 = (−1)ω(p)

For p ≡ ± mod 8 we get ζp = −ζ±1 and hence yp = −y so:(
2

p

)
= yp−1 = −1 = (−1)ω(p)

Remark 6.4. In other words, for p 6= 2 −1 is a quadratic residue mod p iff p ≡ 1 mod 4 and 2 is
a quadratic residue mod p iff p ≡ ±1 mod 8

Corollary 6.5. A prime number p is of the form p = n2 +m2 with n,m ∈ Z iff p ≡ 1 mod 4

Proof. The following are equivalent: p ≡ 1 mod 4 ⇐⇒ −1 is a quadratic residue mod p ⇐⇒ p
is decomposed in Q(i). Let p ≡ 1 mod 4 =⇒ p is decomposed in Q(i). Thus pZ[i] = p1p2 for
p1 6= p2 in Z[i] and hence:

p2 = N(pZ[i]) = N(p1)N(p2)

hence N(p1) = N(p2). We have p1 = (n+mi) for some n,m ∈ Z. Since Z[i] is euclidean and hence
a PID. Thus:

p = N(p1) = n2 +m2

On the other hand, since n2 ≡ 0, 1 mod 4 for all n, the equality p = n2 +m2 implies that p ≡ 0, 1, 2
mod 4, and since p 6= 2 we get that p ≡ 1 mod 4

Theorem 6.6. (Gauss’ Quadratic Reciprocity Law)
For odd primes p 6= ` we have: (

`

p

)
=
(p
`

)
(−1)ε(`)ε(p)

We will give a conceptual proof later using cyclotomic fields.

Remark 6.7. The theorem can be used to calculate Legendre symbols as in the following example:(
29

43

)
=

(
43

29

)
=

(
14

29

)
=

(
2

29

)(
7

29

)
= −

(
7

29

)
= −

(
29

7

)
= −

(
1

7

)
= −1

7 Hilbert Theory

In our usual situation we now assume that the extension L/K is Galois and discuss the consequences
of the prime ideal decomposition.

Remark 7.1. we have that σ(B) = B for σ ∈ G since if P ∈ A[X] is a monic polynomial, then:

P (b) = 0 ⇐⇒ 0 = σ(P (b)) = P (σ(b))

For a prime ideal P of B, σ(P) is again a prime ideal of B. Let 0 6= p ⊆ A be a prime ideal. In:

pB = Pe1
1 · · · p

er
1
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the Pi are those prime ideals P of B with P ∩A = p. Applying σ ∈ G gives:

p = σ(p) = σ(P ∩A) = σ(P ∩ σ(A)) = σ(P ∩A)

Hence:
P | pB ⇐⇒ σ(P) | pB

and σ permutes the Pi. Hence the group G acts on the set {P1, . . . ,Pr}. Claim: We have that:

e(σ(P | p)) = e(P | p)

for P | p and σ ∈ G

Proof. This is clear if σ(P) = P. Otherwise we may assume P = P1 and σ(P) = P2. Then we
have:

r∏
i=1

Pei
i = pB = σ(pB) =

r∏
i=1

σ(Pei
i ) = Pe1

2 · · ·

then the uniqueness of the decomposition implies that e2 = e1

Theorem 7.2. Let 0 6= p be a prime ideal of A. Then the P | p are pairwise conjugate and they
all have the same inertia degree f and ramification index e. Thus we have:

pB = (P1 · · ·Pr)
e and deg(L/K) = efr (3)

Proof. It suffices to show that for P,P′ | pB we have P′ = σ(P) for some σ ∈ G. the the iso
σ : B → B induces an A/p-linear isomorphism:

σ̄ : B/P
∼−→ B/σ(P)

and hence f(P | p) = f(σ(P) | p) as desired.
So given P | p assume there exists P′ | p such that P 6= σ(P) for all σ ∈ G. Then P′ 6⊆ σ(P) since
σ(P) is a maximal ideal. Now:

Lemma 7.3. Let R be a ring, p1, . . . , pr Prime ideals of R, b and ideal with b 6⊆ pi for all i. Then
there exists some b ∈ b with b 6∈ pi for all i.

By the lemma, there exists an element x ∈ P′ with x 6∈ σ(P) for all σ ∈ G. Then:

NL/K(x) =
∏
σ∈G

σ(x) ∈ P

(Indeed, since σ(x) = x for σ = id, for all σ ∈ G we have σ(x)inB)
Hence NL/K(x) ∈ P′ ∩ A = p. Moreover we have that x 6∈ σ−1(P) for all σ ∈ G. Hence σ(x) 6∈ P
and thus:

NL/K(x) 6∈ P since P is a prime ideal

=⇒ NL/K(x) 6∈ p which is a contradiction.

Let p 6= 0 be a prime ideal of A. By our theorem the action on the set of prime ideals in B
dividing p is transitive. The stabilizer group of P denoted GP is called the decomposition group of
P. The map:

G/GP
∼−→ {P | P | p}

σGP 7→ σ(P)
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is a bijection. Hence |G|/|GP| = |G/GP| = r and since |G| = deg(L/K) = efr we see that
|GP| = ef .
Every σ ∈ GP induces an A/p-linear isomorphism:

σ̄ : B/P
∼−→ B/P

Let AutA/p(B/P) be the group of a/p-linear automorphisms of the field B/P. we get a homomor-
phism:

GP → AutA/p(B/P), σ 7→ σ̄

The kernel of this map is the inertia subgroup of P denoted by IP. By definition IP is a normal
subgroup of GP and we have:

IP = {σ ∈ GP | σ(x)− x ∈ P for all x ∈ B}

Theorem 7.4. With notations as above, assume that the residue field extension B/P is separable.
Then B/P is Galois of degree f over A/p. Moreover we have that:

|I|P = e

and there is a short exact sequence:

1→ IP → GP → Gal(B/P, A/p)→ 1

Proof. Let D = LGP be the decomposition field of P over K. Let BD = B ∩ D be the integral
closure of A in D. Set PD = P ∩BD. so we have:

L

P B D

PD BD K

p A

By our theorem GP acts transitively on the prime ideals in B over PD. By definition of GP it
follows that P is the only prime ideal over PD. Hence for some e′ ≥ 1 we have:

PD = Pe′

Let f ′ = f(P | PD), then:
e′f ′ = deg(L/D) = |GP| = ef

The injective homomorphisms:
A/P ↪−→ BD/PD ↪−→ B/P

shows that:
f ′ = deg(B/P/BD/PD) ≤ deg(B/P/AP) = f

By Pd | p we have PD = Pe′ | P = Pe and hence e′ ≤ e. Together this shows that e = e′ and
f = f ′ and hence PD = Pe moreover A/p

∼−→ BD/PD Since B/P over A/p was supposed to be
separable there exists a primitive element x̄ ∈ B/P. Let x ∈ B be a lift of x̄. Let:

Xm + am−1X
m−1 + · · ·+ a0
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be the minimal polynomial of x over D. Since x is integral over BD, the ai ∈ BD. Each zero
of the polynomial has the form σ(x) of some σ ∈ Gal(L/D) = GP. Reducing mod PD we get a
polynomial with coefficients in BD/PD = A/p.

(∗∗) Xm + ām−1X
m−1 + · · ·+ ā0 ∈ A/frakp

Its roots in B/P have the form:
¯σ(x) = σ̄(x̄) ∈ B/P

for σ ∈ GP. Thus B/P contains all roots of (∗∗) and the y generate B/P over A/p. Hence B/P is
the decomposition field of the polynomial over A/p, and hence B/P is normal over a/p and being
separable it is also Galois.
Let τ ∈ Gal(B/P), A/p, since τ(x̄) is a zero of (∗∗) there exists σ ∈ GP such that σ̄(x̄) = τ(x̄).
Since x̄ is a primitive element it follows that σ̄ = τ . Hence the map:

GP → Gal(B/P, A/p), σ 7→ σ̄

is surjective and we have an exact sequence as claimed. In particular we get:

|GP|/|IP| = |Gal(B/P, A/p)| = f

and |GP| = ef . Hence we get |IP| = e as claimed.

Remark 7.5. 1. In the Galois situation we see that p is unramified in L iff IP = 1 for some
(and hence any) P | p

2. In G we have:
GσP = σGPσ

−1

and:
Iσ(P) = σIPσ

−1

Thus the decomposition and inertia of the different prime ideals P | p are conjugate subgroups
in G.

3. for an abelian extension L/K the group GP and IP depend only on p!

Corollary 7.6. In the Galois situation let 0 6= p in A be a prime ideal and P a prime ideal in B
with Pmidp. Let IP ⊆ GP ⊆ G be the inertia and decomposition group of P and let:

T = LIP

be the so called inertia field and:
D = LGP

be the decomposition field of P. Let BT = B ∩ T and BD = B ∩D be the integral closures of A in
T respectively D. Set:

PT = P ∩BT , PD = P ∩BD
Let e = e(P | p), f = f(P | p) and r be the number of primes lying over p. Then we have the
following picture:

B P ramification index inertia deg. #prime factors rel. deg. of ext.

BT PT e 1 1 e

BD PD 1 f 1 f

A p 1 1 r r
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Thus p decomposes in BD with r different unramified prime ideals of inertia degree 1. Analo-
gously for p in BT except that now all r prime ideals dividing p have inertia degree f . Finally all
ramification in the step from T to L.

Proof. We have seen:
P is the only prime ideal over PD and PD = Pe. ON the other hand: p = Pe . . . and hence
p = PD . . . i.e. e(PD | p) = 1. Furthermore we showed that A/p ' B/D/PD i.e.f(PD/p) = 1
Finally:

deg(D/K) = deg(L/K)/ deg(L/D) = efr/|GP| = efr/ef = r

Hence we have established the lower row in the picture. Next we see that:

(T : D) = (L : D)/(L : D) = |GP|/|IP| = ef/e = f

and:
(L : T ) = |IP| = e

This show the rightmost column in the picture:
We have shown that:

GP/IP
∼−→ Gal(B/P, A/p)

Apply this result to L/T instead of L/K. In that extension we have that the inertia group is equal
to the decomposition group, since by definition the former is the entire Galois group. Hence we
have:

Gal(B/P, BT /PT ) = 1

i.e.f(P | PT ) = 1. There is only one prime ideal over PT hence the degree formula gives:

(L : T ) = e(P | PT )

We saw above that (L : T ) = e and hence:

e(P | PT ) = e

Hence we’ve established the upper row in the picture. The formulas:

e = e(P | p) = e(P | PT )e(PT | PD)e(PD | p)

and:
f = (P | p) = f(P | PT )f(PT | PD)f(PD | p)

imply that:
e(Pt | PD) = 1 and f(PT | PD) = f

thus we have established the middle row.

We know turn our attention to the case where L/K is a Galois extension of number fields and
A = OK and so B = OL. Here all residue fields of non-zero prime ideals are finite and hence perfect.
Let p 6= 0 be a prime ideal i OK which is unramified in OL. Let P | p be a prime ideal in OL over
p. Since:

1 = e = |IP|

we have an isomorphism:
GP

∼−→ GL(OL/P,O/p)

We know from the Galois theory of finite fields that the group on the right is cyclic and generated
by the Frobenius Frq for q = |OK/p|. Hence GP also cyclic of order f with a generator σ = σP∈GP

which is uniquely determined by the condition σ̄ = Frq i.e. :

σ(x) ≡ xq mod P, ∀x ∈ OL
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We set:
(P, L/K) := σP

and call it the P-Frobenius. For τ ∈ G we have τGPτ
−1 = Gτ(P) and correspondingly:

τ ◦ (P, L/K) ◦ τ−1 = (τ(P), L/K)

It follows that if the extension L/K is abelian the Frobenius (P, L/K) depends only on p ∩ OK .
Think this case we denote it by p, L/K ∈ Gp := GP

8 Decomposition of primes in cyclotomic fields

Lemma 8.1. For a prime number p and ν ≥ 1 set n = pν . Let ζ be a primitive pν-th root of unity.
SEt π = 1− ζ. IN the ring of integers of Q(ζ) the principle ideal:

P = (π)

is a prime ideal over p of inertia degree f = f(P | p) = 1 We have:

(p) = Pe in OQ(ζ)

where e = (Q(ζ) : Q) = ϕ(pν) = (p− 1)pν−1. The basis 1, ζ, . . . , ζe−1 of Q(ζ) over Q has discrimi-
nant:

d(1, ζ, . . . , ζe−1) = ±ps

where s = pν−1(pν − ν − 1).

Proof. Did everything already.

Theorem 8.2. For n ≥ 1 let ζn be a primitive n-th root of unity. Then we have:

OQ(ζn) = Z[ζn]

Moreover let n = pν11 · · · p
νt
t be the prime factor decomposition of n. Then there are ai ∈ Z, ai ≥ 1

such that:
dQ(ζn)/Q = ±da1Q(ζ

p
ν1
1

)/Q · · · d
a1
Q(ζ

p
νt
t

)Q

Proof. First assume that n = pν ,me = ϕ(pν).Let ζpν . Using that:

d(1, ζ, . . . , ζe−1) = ±ps

and Theorem 1.11 for B = OQ(ζ) we get:

psB ⊆ Z[ζ] ⊆ B (4)

For π = 1− ζ the prime ideal P = (π) has inertia index 1 by Lemma 7.1. Hence we have:

B/πB = Z/p i.e. B = Z+ πB

and therefore:
πB + Z[ζ] = B

We get:
π2B + πZ[ζ] = πB

and together:
π2B + Z[ζ] = B

Arguing inductively we find:
πkB + Z[ζ] = B ∀k ≥ 1 (5)

choose k = e · s, then”
πkB = (πeB)s = (pB)s = psB ⊆(1) Zζ
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Using (2) we conclude Z[ζ] = B. For general n note the following fact from algebra:

Proposition 8.3. For pairwise prime integers n,m ≥ 1 let ζn and ζm be primitive roots of unity.
Then we have:

Q(ζn)Q(ζm) = Q(ζmm)

Q(ζn) ∩Q(ζm) = Q

Theorem 8.4. Let L/K and L′/K be two Galois extensions of degrees n and n′ with L∩L′ = K.
Let A ⊆ K be integrally closed with Quot(A) = K and let B and B′ be the integral closures of A in
L respectively L′. Let w1, . . . wn respectively w′1, . . . , wn′ be the integral bases of B respectively B′

over A with discriminants d, d′. If d, d′ are coprime in the sense that (d) + (d′) = A i.e. xd+ x′d′

for suitable x, x′ ∈ A then wiw
′
j form an integral basis of the ring of integral elements (over A) in

LL′ with discriminant dn
′
(d′)n

Example 8.5. The ring of integrals of Q(
√

5,
√

17) is Z[1+
√

5
2 , 1+

√
17

2 ].

Proof. By Galois theory the map:

Gal(LL′/K)
∼−→ Gal(L/K)×Gal(L′/K)

σ 7→ (σ|L, σ|L′)

is an isomorphism and hence:

deg(LL′/K) = deg(L/K) deg(L′/K) = nn′

The nn′ products wiw
′
j are K-linearly independent and hence a basis of LL′ over K. Assume that

α ∈ KL′ is integral over A and write:

α =
∑
i,j

aijwiw
′
j aij ∈ K

Claim: aij ∈ K

Indeed. Set βj =
∑

i aijwi ∈ L and note that:

Gal(LL′/K) = {σkσ′l}k,l
where:

Gal(L/K) = {σ1, . . . σn} Gal(L′/K) = {σ′1, . . . σ′n′}
Now let:

T = (σ′l(w
′
j))1≤l,j≤n′

a = (σ′1(α), . . . , σ′n′(α))t

b = (β1, . . . , βn′)
t

Then detT 2 = d′ and a = T (b). We have that:

(detT )b = T ∗Tb = T ∗a

where T ∗ denotes the adjunct matrix. Hence:

d′b = (detT )T ′a

has integral (over A) components i.e.:

d′βj =
∑
i

(d′aij)wi ∈ B

hence:
aij = xdaij = x′d′aij ∈ A
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So the wiw
′
j form an A-basis of the ring integral (over A) elements of LL′. the discriminant of this

basis is det((σk(wi))σ
′
l(w
′
j))

2
(k,i),(l,j) A calculation shows that this equals dn

′
d′n. We leave it as an

exercise.

Theorem 8.6. Let n ≥ 1 For a prime number P let fp ≥ 1 be minimal with:

pfp ≡ 1 mod n′

where n′ = n/pνp and where pνP is the highest power of p dividing n. Then:

(p) = (p1 · · · pr)ϕ(pνp) in Q(ζn)

where the prime ideals p1, . . . , pr are pairwise different of inertia degree fp. Moreover r = ϕ(n′)/fp

Remark 8.7. 1. The group (Z/n′)× has order ϕ(n′)¿ Hence an integers fp ≥ 1 as in the theorem
exists sine p is prime to n′. Namely we have the fp is the order of p̄ mod n′ in (Z/n′)×.

2. The theorem implies that p is ramified in Q(ζn) iff p | n and $(pνp) = (p−1)pνp−1 ≥ 2, i.e. if
p is odd and p | n or if p = 2 and 4 | n.

3. Assume p - n. Then p is unramified in Q(ζn) and we have:

(p) = p1 · · · pr

with pairwise different prime ideal s p1, . . . pr of inertia degree fp each where fp ≥ 1 is minimal
with:

pfp ≡ 1 mod n

We have r = ϕ(n)/fp.

Proof. We can apply theorem 4.13 to all p since we know that OQ(ζn) = Z[ζn] (conductor f = (1)).
Let φn(x) be the minimal polynomial of ζn and φ̄(X) ∈ Fp[z] its reduction mod p. We have tho
show that:

(∗) ¯φn(X) = (P̄1 · · · P̄r)ϕ(pνp ) ∈ Fp[X]

where the P̄i(X) are pairwise different monic irreducible polynomials of degree fp in Fp[X]. We fist
reduce to the case p - n. Let {ξi} respectively {ηj} be the the sets of primitive n′-th respectively
pνp-th roots of unity (in an extension field of Q). Then {ξiηj} is the set of primitive n′pνp = n-th
roots of unity (!). WE find:

φn(X) = Πi,j(X − ηjξi)

we have ηj ≡ 1 mod β for all P | p in Qζn. Hence we get:

φn(X) ≡ (
∏
i

(X − ξi))ϕ(pνp ) = (ϕn′(X))ϕ(pνp ) mod P

Since all coefficients line in Z and P ∩ Z = pZ, we get:

φn(X) ≡ φn′(X)ϕ(pνp ) mod p

i.e.:
¯φn(X) = φn′(X)ϕ(pνp ) ∈ Fp[X]

By definition , fp ≥ is minimal with pfp ≡ 1 mod n′. Hence it is sufficient to show (∗) or equivalently
the theorem in the case p - n. Then p - dQ(ζn)/Q and hence p is unramified in the abelian extension
Q(ζn)/Q. LET:

(p,Q(ζn)/Q

be the Frobenius for p.
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Lemma 8.8. Under the isomorphism:

Gal(Q(ζn)/Q)
∼−→ (Z/n)×

we have:
(p,Q(ζn)/Q) 7→ p mod n

The decomposition group Gp of (p) in Gal(Q(ζn)/Q) is cyclic of order f(P | p) (any P over p).
with generator (p,Q(ζn)/Q). Hence:

f(P | p) = order of (p,Q(ζn)/Q) in Gal(Q(ζn)/Q)

=Lemma order of p mod n in (Z/n)×

= fp as in the theorem

Proof of Lemma. Choose a prime ideal P | p in Q(ζn). Let σp ∈ Gal(Q(ζn)/Q) correspond to p
mod n ∈ (Z/n)×. For all xi ∈ Z we have:

σp(
∑
i

xiζ
i
n) =

∑
i

xiζ
pi
n ≡ (

∑
i

xiζ
i
n)p mod P

Thus σp satisfies the defining property of the Frobenius.

Lemma 8.9. Let p 6= 2 be a prime number. Then Q(ζp) contains exactly one quadratic number
field F . We have:

F =

{
Q(
√
p) if p ≡ 1 mod 4

Q(
√
−p) if p ≡ 3 mod4

equivalently:

F +Q(
√
p∗) where p∗ = (−1)

p−1
2 p

Proof. Let K = Q(ζp)/Q is Galois with group (Z/p)× = F×p ∼= Z/(p − 1). Hence Gal(Q(ζp)/Q) is
cyclic of even order and therefore it contains exactly one subgroup of index 2, namely (F×p )2. Hence
K contains exactly one subfield F of degree 2 over Q. Let ` be a prime number which ramifies in
F . Then ` ramifies in K and hence ` = p. Write F = Q(

√
d) with d ∈ Z \ 1 squarefree. If 6≡ 1

mod 4 then dF/Q = 4d and hence 2 is ramified in F hence p = 2 which is a contradiction. Hence
d ≡ 1 mod 4 and dF/Q = d. Since d is squarefree and p is the only prime dividing d (≡ ramified
in F ) we get that d = ±p. Since d ≡ 1 mod 4 we find d = p if p ≡ 1 mod 4 and d = −p if p ≡ 3
mod 4.

Proof of Quadratic Reciprocity. Fix odd prime numbers p 6= `. Set K = Q(ζp). Let (`,K/Q) ∈
Gal(K/Q) = F×p be the Frobenius automorphism of ` (note that ` is unramified in K, K/Q abelian).
We know that:

Gal(K/Q)
∼−→ F×p

(`,K/Q) 7→ ` mod p

This implies: [Stuff Missing]
Hence we have:

(`, F/Q) = (
`

p
)

under the identification:
Gal(F/Q) = F×p /(F×p )2 = µ2
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On the other hand:

(`, F/Q) = id ⇐⇒ decomposition group of ` in F is trivial

⇐⇒ ` is decomposed in F = Q(
√
p∗)

⇐⇒ p∗ is a quadratic residue mod `

⇐⇒
(
p×

`

)
= 1

Analogously:

(`, F/Q) 6= id ⇐⇒ (
p∗

`
) = −1

And hence putting these together:(
`

p

)
(`, F/Q) =

(
p∗

`

)
=

(
−1

`

) p−1
2 (p

`

)
= (−1)

l−1
2

p−1
2

(p
`

)
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