Algebraic Number Theory
Winter Term 2020/21
Lecture by Christopher Deninger
Notes taken by Florian Riedel
February 18, 2021

Contents

1 Integrality 3
$\begin{array}{ll}2 \text { Dedekind Rings } & 10\end{array}$
3 Minkowski Theory 16
4 Decomposition Laws 30
5 Decomposition Laws in Quadratic Fields 39
6 Quadratic reciprocity 40
7 Hilbert Theory 41
8 Decomposition of primes in cyclotomic fields 46

1 Integrality

Aim: Want to define Integral closures of algebraic extensions of \mathbb{Q}.
All rings will be unital and commutative and ring maps preserve the unit.

Definition 1.1. $A \subseteq B$ a extension of rings. We call $b \in B$ integral over A if there exists a monic polynomial $p \in A[T]$ such that $p(b)=0$. We say that B is integral over A if every element of B is.

Theorem 1.2. Elements $b_{1}, \ldots, b_{k} \in B$ are integral over A iff the subring $A\left[b_{1}, \ldots, b_{k}\right] \subseteq B$ is finitely generated as an A-Module.

Proof. Assume $b \in B$ integral over A, and $p \in A[T]$ such that b is a root. Then $p(b)=0$ implies that b^{i} for $i \geq n$ is and A-linear combination of $\left\{1, b^{1}, \ldots, b^{n-1}\right\}$ for $n=\operatorname{deg}(p)$. Hence $A[b]$ is finitely generated as an A-module. The general case follows inductively. This proves the "only if" part.
For the "if" part assume that $A\left[b_{i}\right]$ is a finitely generated A-module with generators w_{1}, \ldots, W_{m}. Then for $b \in A\left[b_{i}\right]$ we have:

$$
b w_{i}=\sum_{j} a_{i j} w_{j} \quad \text { for some } a_{i j} \in A
$$

Recall that for every M a $m \times m$ matrix we have the Laplace formula:

$$
M M^{*}=M^{*} M=\operatorname{det}(M) \operatorname{id}_{m}
$$

Where $M_{i j}^{*}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$ and $M_{i j}$ is M with the i-th row and j-th column deleted. Now set $M=b \operatorname{id}_{m}-\left(a_{i j}\right)$ and $w=\left(w_{i}\right)$. Then our equation becomes simply:

$$
M w=0
$$

Applying Laplace we get that $(\mathrm{M}) w_{i}=0$. Since $1 \in A\left[b_{i}\right]$ is an A-linear combination of the w_{i} we have that $\operatorname{det}(M)=0$ i.e.:

$$
\operatorname{det}\left(b \mathrm{id}_{m}-\left(a_{i j}\right)\right)
$$

This is a monic polynomial equation over A for b. Hence b is integral over A.
Corollary 1.3. $-A \subset B$ a ring extension. Define:

$$
A^{\sim}:=\{b \in B \mid b \text { is integral over } A\}
$$

Then $A \subset A^{\sim} \subset B$ is a subring of B called the integral closure of A in B

- $A \subset B \subset C$ ring extensions. If C / B and B / A are integral then C / A is integral.

Definition 1.4. - For $A \subset B$ we say that A is integrally closed in B if we have $A^{\sim}=A$

- If A is a domain is called integrally closed if it is in its fraction field.

Remark 1.5. - Integral closures are integrally closed

- Every factorial ring and hence every principal ideal domain A is integrally closed. [Indeed: Let $x \in K=\operatorname{Quot}(A)$ satisfying $p(x)=0$ with $p=a_{N} J^{n}+\ldots a_{0}$. Write $x=a / b$ with $a, b \in A$ coprime. Then:

$$
a^{n}+a_{n-1} b a^{n-1}+\ldots a_{0} b^{n}=0
$$

Assume some prime element π divides b, then π divides a^{n} and consequently also a. Thus there is no such π and thus b is a unit.]

Now lets turn to the most important example for us: Let K / \mathbb{Q} be algebraic and \mathcal{O}_{K} be the integral closure of \mathbb{Z} in K. Then we've seen that \mathcal{O}_{K} is an integrally closed subring of K.
The transitive property of integrality implies that for algebraic extensions:

$$
\mathbb{Q} \subset K \subset L
$$

The ring \mathcal{O}_{L} is the integral closure of \mathcal{O}_{K} in L.
Question: How can we efficiently check integrality of an element?
Proposition 1.6. Let A be an integrally closed domain with quotient field K. Let L / K be and algebraic extension. For $\beta \in L$ let $p \in K[T]$ be the minimal polynomial of β over K. Then: β is integral over A iff $p \in A[X]$

Proof. The "if" part is clear since p is monic. For the "only if part" let $q \in A[T]$ be a monic polynomial with $q(\beta)=0$. Choose a finite extension L^{\sim} / L such that q decomposes into linear factors in L^{\sim}. Since p divides q in $K[t] \subset L^{\sim}[T]$, also p decomposes into linear factors in $L^{\sim}[T]$, and the roots of p in L^{\sim} are integral over A (Since they are roots of q). Hence the coefficients c_{i} of p are integral over A. Since $c_{i} \in K$ we in fact must have $c_{i} \in A$ since A is integrally closed.

Corollary 1.7. Let K / \mathbb{Q} be a quadratic field. Then there exists a squarefree $d \in \mathbb{Z}$ with $d \neq 1$ and $K=\mathbb{Q}(\sqrt{d})$. Then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$ if $d-1$ is not divisible by 4. Otherwise we have $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.

Proof. For $d-1$ not divisible by 4 respectively $d-1$ divisible by 4 the minimal polynomials with coefficients in \mathbb{Z} are

$$
X^{2}-d \text { resp. } X^{2}-X+\frac{1-d}{4}
$$

Have zeroes \sqrt{d} resp. $\frac{1+\sqrt{d}}{2}$. Hence these elements are integral over \mathbb{Z} and thus lie in \mathcal{O}_{K}. This proves the one inclusion. For the other one let $a \in \mathcal{O}_{K}$ with minimal polynomial $P(X)$. Then $P \in \mathbb{Z}[X]$.
$-a \in \mathbb{Q}$ then $P(X)=X-a$, hence $a \in \mathbb{Z} \subset$ rhs

- a not in \mathbb{Q}, then $a=$ frac $\alpha+\beta \sqrt{d} 2 \alpha, \beta \in \mathbb{Q}$ with $\beta \neq 0$. Setting $a^{\prime}:=\frac{\alpha-\beta \sqrt{d}}{2}$ we have

$$
\left.P(X)=(X-a)(X-a)^{\prime}=X^{2}-\alpha+\text { fraca }^{2}-d \beta^{2} 4\right)
$$

Hence $\alpha \in \mathbb{Z}$ and $\alpha^{2}-d \beta^{2} \in 4 \mathbb{Z}$. Hence $d \beta^{2} \in \mathbb{Z}$. Thus $\beta \in \mathbb{Z}$ since d was by assumption square free.
If d is not $1 \bmod 4$ then since d is not $0 \bmod$ have that

$$
d \cong 2,3 \quad \bmod 4
$$

On the other hand $\alpha^{2}, \beta^{2} \cong 0,1 \bmod 4$. We know that $\alpha^{2} \equiv d \beta^{2} \bmod 4$. This implies

$$
\alpha^{2}, \beta^{2} \equiv \bmod 4 \Longrightarrow 2 \mid \alpha, \beta
$$

and consequently $a \in \mathbb{Z}[\sqrt{d}]$
For $d \equiv 1 \bmod 4$ we get

$$
0 \equiv \alpha^{2}-d \beta^{2} \equiv \alpha^{2}-\beta^{2} \equiv(\alpha-\beta)(\alpha+\beta) \bmod 4
$$

Thus $2 \mid \alpha-\beta$ or $2 \mid \alpha-\beta$, but $\alpha-\beta=(\alpha+\beta-2 \beta$ hence $2 \mid \alpha-\beta$

Notation: Let L / K be a finite field extensions. For $x \in L$ consider the K-linear map

$$
m_{x}: L \rightarrow L \quad y \mapsto x y
$$

. Set $\operatorname{Tr}_{L / K}(x):=\operatorname{Tr}\left(m_{x}\right)$
and $N_{L / K}(x):=\operatorname{det}\left(m_{x}\right) \in K$
Then $\operatorname{Tr}: L \rightarrow K$ is additive and $N: L^{\times} \rightarrow K^{\times}$is multiplicative. Since the map $L \rightarrow \operatorname{Hom}_{K}(L, L)$ is a ring morphism. The trace and norm are coefficients of the characteristic polynomial of m_{x} :

$$
P_{m_{x}}:=\operatorname{det}\left(t \mathrm{id}-m_{x}\right)=t^{n}-\operatorname{Tr}\left(m_{x}\right)+\cdots+(-1)^{n} N(x)
$$

For $n=\operatorname{deg}(L / K)$.

Theorem 1.8. If L / K is a finite separable extension and if $\sigma: L \rightarrow \bar{K}$ runs over the $n=\operatorname{deg}(L / K)$ pairwise different embeddings of L into the algebraic closure of K. Then we have for all $x \in L$:

$$
P_{m_{x}}=\prod_{\sigma}(t-\sigma(x))
$$

In particular :

$$
\begin{aligned}
\operatorname{Tr}_{L / K}(x) & =\sum_{\sigma} \sigma(x) \\
N_{L / K}(x) & =\prod_{\sigma} \sigma(x)
\end{aligned}
$$

Proof. Let $m_{x}(t)$ be the minimal polynomial of x over K.If $r=\operatorname{deg}(K(x) / K)$, then

$$
m_{x}(t)=t^{r}-c_{r-1} t^{r-1}-\ldots c_{0} \quad c_{i} \in K
$$

Claim: $P_{m_{x}}=m_{x}^{d}$ where $d=\operatorname{deg}(L / K(x))=m / r$
Proof of Claim: Consider the basis $1, x, \ldots, x^{r-1}$ of $K(x) / K$ and choose a basis $a_{1}, \ldots, a_{d} \mathrm{f} L / K(x)$. Then:

$$
a_{1}, a_{1} x, \ldots a_{1} x^{r-1}, \ldots, a_{d} x, \ldots, a_{d} x^{r-1}
$$

is a K-basis of L. In this basis the matrix of m_{x} is a $d x d$ block matrix with copies of A along the diagonal where A has 1's on the off diagonal and 0 else except the last line which consists of $c_{1}, /$ dotsc $_{r-1}$ (The "almost Jordan Form"). Then:

$$
\operatorname{det}(t \mathrm{id}-A)=t^{r}-c_{r-1} t^{r-1}-\cdots-c_{0}=m_{x}(t)
$$

Hence $P_{m_{x}}(r)=\operatorname{det}(t \mathrm{id}-A)^{d}=m_{x}(t)^{d}$ which implies our first claim.
For $\sigma, \operatorname{\tau in} \operatorname{Hom}_{K}(L, \bar{K})$ say $\sigma \sim \tau$ if they agree on $x \in K$. Choose a system of representatives $\sigma_{1}, \ldots \sigma_{r}$ for this relation. Then:

$$
\operatorname{Hom}_{K}(K(x), \bar{K})=\left\{\left.\sigma_{r}\right|_{K(x)},\left.\ldots \sigma_{r}\right|_{K(x)}\right\}
$$

and:

$$
m_{x}(t):=\prod_{i}\left(t-\sigma_{i}(x)\right)
$$

Indeed: both sides are monic polynomials of the same degree r with the same zeroes $\sigma_{i}(x)$ and are thus equal. Now we know by our earlier claim:

$$
P_{m_{x}}(t)=m_{x}(t)^{d}=\prod_{i}(t-\sigma(x))^{d}=\prod_{i} \prod_{\sigma \sim \sigma_{i}}(t-\sigma(x))=\prod_{\sigma}(t-\sigma(x))
$$

Were we have used that separability implies that for each σ_{i} there are exactly d equivalent σ 's (i.e. the extensions of $\left.\sigma_{i}\right|_{K(x)}$ to $\left.L\right)$.

Corollary 1.9. For finite field extensions $K \subset L \subset M$ we have that:

$$
\operatorname{Tr} L / K \circ T r_{M / L}=T r_{M / K}
$$

and

$$
N_{L / K} \circ N_{M / L}=N_{M / K}
$$

Proof. We only prove the case M / K separable but it is true in general.
The set $\operatorname{Hom}_{K}(M, \bar{K})$ decomposes in $n=\operatorname{deg}(L / K)$ equivalence relations under :

$$
\left.\operatorname{sigma} \sim \tau \Longleftrightarrow \sigma\right|_{L}=\left.\tau\right|_{L}
$$

Namely given n representatives σ_{i} the:

$$
\operatorname{Hom}_{K}(L, \bar{K})= \begin{cases}\left.\sigma_{i}\right|_{L} & i\}\end{cases}
$$

Hnece for $x \in M$ we can write:

$$
\operatorname{Tr}_{M / K}(x)=\sum_{i} \sum_{\sigma \sim \sigma_{i}} \sigma(x)=\sum_{i} T r_{\sigma_{i}(M) / \sigma_{i}(L)}\left(\sigma_{i}(x)\right)
$$

[For the rightmost equation consider:

The σ 's with $\sigma \sim \sigma_{i}$ correspond to the σ^{\prime} with $\left.\sigma^{\prime}\right|_{\sigma_{i}(L)}=$ id. Now use Thm1.4. for $\sigma_{i}(M) / \sigma_{i}(L)$. Note: $\left.\sigma=\sigma^{\prime} \circ \sigma_{i}\right]$ Get

$$
\operatorname{Tr}_{M / K}(x)=\sum_{i} \sigma_{i}\left(\operatorname{Tr}_{M / L}(x)\right)=T r_{L / K} \circ \operatorname{Tr}_{M / L}(x)
$$

And a similiar argument for the norm.
Final notation:

Definition 1.10. L / K finite separable field extension with a_{1}, \ldots, a_{n} a K-basis of L. Set:

$$
d\left(a_{1}, \ldots, a_{n}\right):=\operatorname{det}(A)^{2}
$$

Where $A=\left(\sigma_{i}\left(a_{j}\right)\right)_{i, j}$ and $\operatorname{Hom}_{K}\left(L, \bar{K}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}\right)$. This element is called the discriminant of a_{1}, \ldots, a_{n}. It is clearly invariant under permutation of the σ_{i} and α_{j}

Alternatively:

$$
\operatorname{Tr}_{L / K}\left(a_{i} a_{j}\right)=\sum_{k} \sigma_{k}\left(a_{i} a_{j}\right)=\sum_{k} \sigma_{k}\left(a_{i}\right) \sigma_{k}\left(a_{j}\right)
$$

implies that:

$$
\left(\operatorname{Tr}_{L / K}\left(a_{i} a_{j}\right)_{i, j}\right)=A^{t} A
$$

In particular we have $d\left(a_{1}, \ldots, a_{n}\right)=\operatorname{det}\left(\left(\operatorname{Tr}_{L / K}\left(a_{i} a_{j}\right)_{i j}\right) \in K\right.$. Example:
If some element $x \in \bar{K}$ is separable over K and if $n=\operatorname{deg}(K(x) / K)$ then the basis $\left\{1, x, \ldots, x^{-1}\right\}$ of $L=K(x)$ has discriminant (Vandermonde determinant)

$$
d\left(x, \ldots, x^{n-1}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)^{2}=\prod_{i<j}\left(\sigma_{i}(x)-\sigma_{j}(x)\right)^{2}
$$

where $x_{i}=\sigma_{i}(x)$. Exercise: the rhs is equal to:

$$
\pm N_{K / \mathbb{Q}}\left(f^{\prime}(x)\right)
$$

Where f is the minimal polynomial of x.
In particular we see that the the discriminant is nonzero since by separability $x_{i} \neq x_{j}$. Now for a first application of the discriminant

Corollary 1.11. For L / K finite separable the K-bilinear form:

$$
(-,-): L \times L \rightarrow K, \quad(x, y) \mapsto \operatorname{Tr}_{L / K}(x y)
$$

is non-degenerate. Furthermore if a_{1}, \ldots, a_{n} is a basis of L over K then:

$$
d\left(a_{1}, \ldots, a_{n}\right) \neq 0
$$

Remark 1.12. Since this is a perfect pairing it induces a K-linear isomorphism $L \xrightarrow{\sim} L^{\vee}$.
Proof. Since L / K is finite separable there exists a $\theta \in L$ such that $L=K(\theta)$. In terms of the basis $\left\{1, \theta, \ldots, \theta^{n-1}\right\}$ the matrix M of the form (,--) is given by:

$$
M=\left(\operatorname{Tr}_{L / K}\left(\theta^{i-1} \theta^{j-1}\right)\right)_{i, j}
$$

And thus:

$$
\operatorname{det} M=d\left(1, \theta, \ldots, \theta^{n-1}\right)=\prod_{i<j}\left(\sigma_{i}\left(\theta-\sigma_{j}(\theta)\right)^{2} \neq 0\right.
$$

Hence M is invertible and the pairing is perfect. In particular the matrix N with respect to the basis a_{1}, \ldots, a_{n} is invertible as well but by doing the same logic backwards we see that $d\left(a_{1}, \ldots, a_{n}\right) \neq 0$ as claimed.

Proposition 1.13. Let A be an integrally closed domain with quotient field K and let B be the integral closure of A in a finite separable field extension L / K.

Then:

- For $x \in B$ we have $\operatorname{Tr}_{L / K}(x) \in A$ and $N_{L / K}(x) \in A$
- For $x \in B$ we have that $x \in B^{\times} \Longleftrightarrow N_{L / K}(x) \in A^{\times}$

Proof. $-x \in B \Longrightarrow x^{m}+a_{m-1} x^{m-1}+\ldots a_{o}=0$ For $a_{i} \in A$. for $\sigma \in \operatorname{Hom}_{K}(L, \bar{K})$ we get:

$$
\sigma(x)^{m}+a_{m-1} \sigma(x)^{n-1}+\cdots+a_{0}
$$

and hence $\sigma(x) \in \bar{K}$ is integral over A and consequently:

$$
T r_{L / K}(x)=\sum_{\sigma} \sigma(x)
$$

is integral over A. Since $\operatorname{Tr}_{L / K} \in K$ and since A is integrally closed in K we see that $\operatorname{Tr}_{L / K}(x) \in A$. Same argument works for the norm.
$-x \in B^{\times} \Longrightarrow x y=1$ for some $y \in B$ hence:

$$
N_{L / K}(x) N_{L / K}(y)=1
$$

Since both factors are in A we get that $N_{L / K}(x) \in A^{\times}$. Now consider some $x \in B$ with $N_{L / K}(x) \in A^{\times}$. Then there exists some $a \in A$ with:

$$
1=a N_{L / K}(x)=a \prod_{\sigma} \sigma(x)=\left(a \prod_{\sigma \neq \mathrm{id}} \sigma(x)\right) x
$$

Here we view L as a subfield of \bar{K} and denote the corresponding embedding by id. So the element:

$$
y:=a \prod_{\sigma \neq \mathrm{id}} \sigma(x)=x^{-1} \in L
$$

is integral over A (since the a and the $\sigma(x)$ are) and hence lies in B.

Now we give an estimate for the denominators of elements in B :
Theorem 1.14. In the situation of the previous proposition let $w_{1}, \ldots, w_{n} \in B$ be a basis of L / K with discriminant $d=d\left(w_{1}, \ldots, w_{n}\right)$ then:

$$
d B \subseteq A w_{1}+\ldots A w_{n}
$$

Remark 1.15. For $x \in L$ there exists some $0 \neq a \in A$ with $a x \in B$
Proof. Since L / K there exists an equation:

$$
x^{n} c_{n-1} x^{n-1}+\cdots+c_{0}=0
$$

with $c_{i} \in K$. Since K is the quotient field of A there exists some $0 \neq a \in A$ with $a c_{i} \in A$ for all i. Multiplying the equation by a^{n} the gives an equation for $a x$ with coefficients in A :

$$
(a x)^{n}+a c_{n-1}(a x)^{n-1}+\cdots+a^{n} c_{0}=0
$$

And thus $a x \in L$ is integral over A, hence lies in B.
Consequences:

- A basis as in the theorem always exists.
$-\operatorname{Quot} B=L$
Proof. Fir $w \in B$ there exits $x_{j} \in K$ such that:

$$
w=\sum_{j=1}^{n} x_{j} w_{j}
$$

Hence we get by applying the trace:

$$
\begin{equation*}
\operatorname{Tr}_{L / K}\left(w_{i} w\right)=\sum_{j=1}^{n} x_{j} \operatorname{Tr}_{L / K}\left(w_{i} w_{j}\right) \tag{2}
\end{equation*}
$$

Since $0 \neq d=\operatorname{det}\left(\operatorname{Tr}_{L / K}\left(w_{i} w_{j}\right)\right)$ by assumption this has a unique solution. Specifically Cramer's rule gives:

$$
x_{j}=\frac{a_{j}}{d} \text { for certain } a_{j} \in A
$$

So we get:

$$
d w=\sum_{j=1}^{n}\left(d x_{j}\right) w_{j}=\sum_{j=1}^{n} a_{j} w_{j} \in A w_{1}+\cdots+A w_{n}
$$

Definition 1.16. In the situation of prop(ref) assume that B is a free A-module of rank n. Then a basis $w_{1}, \ldots, w_{n} \in B$ over A is called an integral basis of B over A. Such a basis is easily seen to be a basis of L / K as well and thus:

$$
n=\operatorname{rnk}_{A} B=\operatorname{deg}(L / B)
$$

Remark 1.17. In general B is not free as an A-module, so integral bases may not exist.
Theorem 1.18. Assume that in the Situation of our proposition the ring A is a PID. Then B and more generally every finitely generated B-submodule $M \neq 0$ of L is free of rank $n=\operatorname{deg}(L / K)$ as an A-module.

For the proof of this we need a consequence from the classification of finitely generated modules for PIDs:

Theorem 1.19. Let A be a PID and $M \neq 0$ a finitely generated torsionfree A-module. Then M is a free A-module of finite rank and every submodule $N \subseteq M$ is also free of rank $\leq \mathrm{rk}_{A} M$.

Proof of Theorem 1.18. Choose a basis $w_{1}, \ldots, w_{n} \in B$ of L over K. Then by Thm (1.11) [wont be right] we have:

$$
d B \subset A w_{1}+\cdots+A w_{n} \subset B
$$

for some $0 \neq d \in A$. Then $A w_{1}+\ldots A w_{n}$ is free of rank n since the w_{i} are linearly independent over K and hence over A. Since A was a principle domain our previous theorem asserts that $d B$ is a free A-module of rank $\leq n$. Since $B \cong d B$ as an A-module it is also free with the same estimate. But we also have $A w_{1}+\cdots+A w_{n} \subset B$ so $r k_{A} B \leq n$ and hence $\mathrm{rk}_{A} B=n=\operatorname{deg} L / N$.Now Choose generators e_{1}, \ldots, e_{r} of $M \subset L$ as a B-module and choose some $0 \neq a \in A$ such that $a e_{i} \in B$ for all i. Then:

$$
a M \subset B
$$

so $a M$ is a free A-module of rank $\leq \mathrm{rk}_{A} B=n$ and hence so is M. The map:

$$
B \rightarrow M \quad w \mapsto b w
$$

is an injective map of A-modules. Hence we may view B as a submodule of M and thus $n=$ $\mathrm{rk}_{A} B \leq \mathrm{rk}_{A} M$ and thus $\mathrm{rk}_{A} M=n$.

Corollary 1.20. Let K / \mathbb{Q} be a number field of degree n with ring of integers \mathcal{O}_{K}. Every finitely generated \mathcal{O}_{K} submodule $\mathfrak{a} \neq 0$ of K is a free \mathbb{Z}-module of rank n. The discriminant $d\left(a_{1}, \ldots, a_{n}\right)$ of $a \mathbb{Z}$ basis $\left\{a_{i}\right\}$ of \mathfrak{a} depends only on \mathfrak{a} and is denoted by $d(\mathfrak{a})$ We call

$$
d_{k}:=d\left(\mathcal{O}_{k}\right)
$$

the discriminant of K.
Proof. The first part is clear by the theorem since \mathbb{Z} is a PID.
Let b_{1}, \ldots, b_{n} be another \mathbb{Z}-basis of \mathfrak{a}. Then there is an invertible matrix $\left(m_{i j}\right)=M \in \mathrm{Gl}_{n}(\mathbb{Z})$ with. such that:

$$
b_{i}=\sum_{j} m_{i j} a_{j}
$$

hence:

$$
\sigma\left(b_{i}\right)=\sum_{j} m_{i j} \sigma\left(a_{j}\right)
$$

for all $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \bar{Q})=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Thus we have:

$$
d\left(b_{1}, \ldots, b_{n}\right)=\operatorname{det}\left(\left(\sigma_{k}\left(b_{i}\right)\right)_{k, i}\right)^{2}=\left(\operatorname{det} M \operatorname{det}\left(\sigma_{k}\left(b_{i}\right)\right)_{k, i}\right)=(\operatorname{det} M)^{2} d\left(a_{1}, \ldots, a_{n}\right)
$$

Since $M \in \mathrm{Gl}_{n}(\mathbb{Z})$ we have that $\operatorname{det} M= \pm 1$ so we see that:

$$
d\left(a_{1}, \ldots, a_{n}\right)=d\left(b_{1}, \ldots, b_{n}\right)
$$

Example 1.21. K / \mathbb{Q} quadratic, $K=\mathbb{Q}(\sqrt{d})$ for $1 \neq d \in \mathbb{Z}$ square-free. If d is not 1 in $\mathbb{Z} / 4 \mathbb{Z}$ the $\mathcal{O}_{K} \cong \mathbb{Z} \oplus \mathbb{Z} \sqrt{d}$, hence:

$$
d_{k}=\left|\begin{array}{ll}
1 & 1+\sqrt{d} \\
1 & 1-\sqrt{d}
\end{array}\right|=4 d
$$

For $d=1 \in \mathbb{Z} / 4 \mathbb{Z}$, we have $\mathcal{O}_{K}=\mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{d}}{2}$ and thus we get:

$$
d_{k}=\left|\begin{array}{cc}
1 & \frac{1+\sqrt{d}}{2} \\
1 & \frac{1-\sqrt{d}}{2}
\end{array}\right|=d
$$

2 Dedekind Rings

Definition 2.1 (/Theorem). A ring R is called Noetherian if one of the following equivalent conditions hold:

1. Each nonempty set S of ideals in R has a maximal element
2. Every ascending chain of ideals in R is stationary.
3. Every ideal in R is finitely generated

Proof. 1) $\Longrightarrow 2$): Consider a a chain of ideals in R

$$
I_{1} \subset I_{2} \subset \ldots
$$

By (1) the set $S=\left\{I_{i} \mid i \geq 1\right\}$ has a maximal element so the chain stabilizes.
$(2) \Longrightarrow(3)$: Assume that I is not finitely generated. This immediately gives you an infinite ascending chain.
$(3) \Longrightarrow(1):$ Assume that a nonempty set S of ideals in R has no maximal element. Then there exists a strictly ascending chain of ideals in the set S :

$$
I_{1} \subset I_{2} \subset \ldots
$$

The union:

$$
I=\bigcup_{i \geq 1} I_{i}
$$

is an ideal in R and hence is finitely generated by (3). Thus it may be written as $I=\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in R$. Then there exists some $N \geq 1$ with $a_{1}, \ldots, a_{n} \in I_{N}$ i.e. $I=I_{N}$ which is contradiction.

Example 2.2. 1. Principle ideal domains are Noetherian, e.g. $R=\mathbb{Z}$
2. By Hilbert's Basis theorem: R Noetherian $\Longrightarrow R[X]$ Noetherian
3. $\mathbb{Q}\left[X_{1}, X_{2}, \ldots\right]$ is not Noetherian.

Definition 2.3. A ring R is called a Dedekind ring iff:

1. R is an integrally closed domain
2. R is Noetherian.
3. Every prime ideal $\mathfrak{p} \neq 0$ is maximal

Example 2.4. - Every principal domain is Dedekind, so in particular \mathbb{Z}

- Rings of integers are Dedekind [We will show this]

Theorem 2.5. Let K / \mathbb{Q} be a number field, then the ring of integers \mathcal{O}_{K} is a Dedekind ring.
Proof. Ad 2: Let $I \subset \mathcal{O}_{K}$ be an ideal. We've seen that as a \mathbb{Z}-module \mathcal{O}_{K} is finitely generated and free. Hence the ideal $I \subset \mathcal{O}_{K}$ is also finitely generated as a \mathbb{Z}-module an thus also as an \mathcal{O}_{K}, i.e. \mathcal{O}_{K} is Noetherian. Ad 1: Follows since \mathbb{Z} is integrally closed and we've seen that integral closure is transitive Ad 3: Let $\mathfrak{p} \neq 0$ be a prime ideal. Then $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}.
Claim: $\mathfrak{p} \cap \mathbb{Z} \neq 0$.
Indeed: Choose $0 \neq y \in \mathfrak{p}$. Then there exists an equation:

$$
y^{n}+a_{n-1} y^{n-1}+\ldots a_{O}
$$

with $n \geq 1, a_{i} \in \mathbb{Z}$. We may assume that $a_{o} \neq 0$ (otherwise divide by a suitable power of y). Since $y \in \mathfrak{p}$ the equation implies that $a_{0} \in \mathfrak{p} \cap \mathbb{Z} \neq 0$. Thus $\mathfrak{p} \cap \mathbb{Z}=(p)$ for some prime p. Hence the map $\mathbb{Z} \hookrightarrow \mathcal{O}_{K}$ induces an inclusion:

$$
\mathbb{Z} / p \hookrightarrow \mathcal{O}_{K} / \mathfrak{p}
$$

and since \mathcal{O}_{K} is a finitely generated \mathbb{Z}-module, the ring \mathcal{O}_{K} is a finitely generated \mathbb{F}_{p}-vector space. Consider $0 \neq \bar{x} \in \mathcal{O p}$. The \mathbb{F}_{p}-linear map:

$$
\phi_{\bar{x}}: \mathcal{O}_{K} / \mathfrak{p} \rightarrow \mathcal{O}_{K} / \mathfrak{p}, \quad \bar{y} \mapsto \bar{x} \bar{y}
$$

is injective since $\mathcal{O}_{K} / \mathfrak{p}$ is a domain. However it is also a finite dimensional \mathbb{F}_{p}-vector space this map is in fact an isomorphism. Consequently \bar{x} is invertible and since it was arbitrary $\mathcal{O}_{K} / \mathfrak{p}$ is a field.

Notations: R a domain, $K=\operatorname{Quot}(R)$, let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be R-submodules of K. We set:
$-\mathfrak{a b}:=R$-submodule of K generated by all products $a b$ with $a \in \mathfrak{a}, b \in \mathfrak{b}$
$-\mathfrak{a}^{-1}:=\{x \in K \mid x \mathfrak{a} \subseteq R\}$

Facts:

- Associativity
- commutativity
$-\mathfrak{a} \mathfrak{a}^{-1} \subseteq T$
$-\mathfrak{a} \subseteq \mathfrak{b} \Longrightarrow \mathfrak{b}^{-1} \subseteq \mathfrak{a}^{-1}$
$-\mathfrak{a} R \subset \mathfrak{a}$
For ideals $\mathfrak{a}, \mathfrak{b} \subseteq R$ the product $\mathfrak{a b} \subset \mathfrak{a} \cap \mathfrak{b}$ is an ideal. We write $\mathfrak{a} \mid \mathfrak{b}$ if $\mathfrak{b} \subset \mathfrak{a}$. This is clearly transitive.
Fact: If \mathfrak{p} is a prime ideal, then:

$$
\mathfrak{p}|\mathfrak{a p} \Longrightarrow \mathfrak{p}| \mathfrak{a} \text { or } \mathfrak{p} \mid \mathfrak{b}
$$

Proof. If \mathfrak{p} divides neither then there exists some $a \in \mathfrak{a}$ with a not in \mathfrak{p} and $n \in \mathfrak{b}$ with b not int \mathfrak{p}. Then since $\mathfrak{p i s}$ prime $a b$ is not in \mathfrak{p} and hence \mathfrak{p} does no divide $\mathfrak{a b}$

Theorem 2.6. Let R be a Dedekind ring. Then every ideal $0 \neq \mathfrak{a} \neq R$ can be written as a product of nonzero prime ideals:

$$
\mathfrak{a}=\prod_{i=1}^{r} \mathfrak{p}_{i}
$$

This is unique up to ordering.
For the proof we need the following Lemma:

Lemma 2.7. R a Dedekind ring with quotient field K. Then we have:

1. For every $\mathfrak{a} \neq 0$ in R there exists prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ with $\mathfrak{a} \mid \mathfrak{p}_{1} \ldots \mathfrak{p}_{r}$
2. if $\mathfrak{p} \neq 0$ is a prime ideal in R then for every ideal $\mathfrak{a} \neq 0$ we have :

$$
\mathfrak{a} \varsubsetneqq \mathfrak{a p} \mathfrak{p}^{-1}
$$

Proof. Proof of the Theorem using the Lemma Let \mathcal{S} be the set of ideals $0 \neq \mathfrak{a} \neq R$ which do not have a decomposition into prime ideals as in the theorem. We claim that $\mathcal{S}=\varnothing$. Indeed, assume that $\mathcal{S} \neq \varnothing$, then since the ring is Noetherian \mathcal{S} has a maximal element. Choose a maximal ideal \mathfrak{p} containing \mathfrak{a}. Since $R \subset \mathfrak{p}^{-1}$ we get that:

$$
\mathfrak{a} \subset \mathfrak{a} \mathfrak{p}^{-1} \subset \mathfrak{p} \mathfrak{p}^{-1} \subset R
$$

Now by our Lemma we know that $\mathfrak{a} \varsubsetneqq \mathfrak{a p}^{-1}$ and $\mathfrak{p} \varsubsetneqq \mathfrak{p p}^{-1} \subset R$. Since \mathfrak{p} was maximal in fact $\mathfrak{p p}^{-1}=R$ and since \mathfrak{a} was maximal in $c l S$ we have that $\mathfrak{a p}^{-1}$ is not in \mathcal{S}. Note that $\mathfrak{a p} \mathfrak{p}^{-1} \neq 0$ since $\mathfrak{a} \neq 0$ and $\mathfrak{a p}{ }^{-1} \neq R$ [otherwise:

$$
\mathfrak{a}=\mathfrak{a} R=\mathfrak{a p p} \mathfrak{p}^{-1}=\mathfrak{a p}^{-1} \mathfrak{p}=R \mathfrak{p}=\mathfrak{p}
$$

contradicting that $\mathfrak{a} \in \mathcal{S}]$. Thus there exist prime ideals $\mathfrak{p}_{1}, \ldots \mathfrak{p}_{r}$ such that:

$$
\mathfrak{a p}^{-1}=\prod_{i} \mathfrak{p}_{i}
$$

hence:

$$
\mathfrak{a}=\mathfrak{p} \prod_{i} \mathfrak{p}_{i}
$$

Ad Uniqueness: Assume we have two decompositions

$$
\mathfrak{a}=\prod_{i=0}^{r} \mathfrak{p}_{i}=\prod_{i=0}^{s} \mathfrak{q}_{i}
$$

then $\mathfrak{p}_{1} \mid \prod_{i} \mathfrak{q}_{i}$ and inductively we conclude that $\mathfrak{p}_{1} \mid \mathfrak{q}_{j}$ for some j. By renumbering we may assume that $\mathfrak{p}_{1} \mid \mathfrak{q}_{1}$ since \mathfrak{q}_{1} is maximal. Then again by our lemma we have that:

$$
\mathfrak{p}_{1} \varsubsetneqq \mathfrak{p}_{1} \mathfrak{p}_{1}^{-1} \subset R
$$

and by maximality the rightmost inclusion is an equality. Thus multiplying by \mathfrak{p}_{1}^{-1} gives"

$$
\prod_{i=1}^{r} \mathfrak{p}_{i}=\prod_{i=1}^{s} \mathfrak{q}_{i}
$$

and inductively we see that $r=s$ and $\mathfrak{p}_{i}=\mathfrak{q}_{i}$ for all i.
For the proof we needed the following Lemma:
Lemma 2.8. If R is a Dedekind Ring, with Quotient field K, then the following hold:
(a) For every ideal $0 \neq I$ in R there exists nonzero prime ideals P_{1}, \ldots, P_{r} such that:

$$
I \mid P_{1} \cdots P_{r}
$$

(b) If P a nonzero prime ideal in R, then for every ideal $0 \neq I$ in R we have that:

$$
I \varsubsetneqq I P^{-1}
$$

Proof. (a) Let M be the set of ideals $I \neq 0$ which do not satisfy the assertion (a). We claim that $M=\emptyset$. Assume that $M \neq \emptyset$, since R Noetherian there exists a maximal $I \in M$. By definition of M, the ideal I cannot be prime. Hence there exist $b, c \in R$ with $b x \in I$ but b, c not in I. Set $J=I+(b)$ and $H=I+(c)$. Then $I \varsubsetneqq J$ and $I \varsubsetneqq H$ and $J H \subset I$, i.e. $I \mid J H$. We have that J, H are not in M since I was maximal in M. Thus we get can find primes P_{i} such that:

$$
J \mid P_{1} \cdots P_{s} \text { and } H \mid P_{s+1} \cdots P_{r}
$$

and hence:

$$
I \mid P_{1} \cdots P_{r}
$$

Which is a contradiction. This shows that $M=\emptyset$
(b) We first show that $R \nsucceq P^{-1}$ (" \subset " is clear). If $P=(a)$, then since $a \neq 0$ and $a^{-1} \in P^{-1}$. If $R=P^{-1}$, then $a^{-1} \in R$ and so a is a unit meaning $P=(a)=R$ which is a contradiction, so $R \varsubsetneqq P^{=1}$. Now assume that P is not principal. Choose some $0 \neq a \in P$. By part (a) there exits prime ideals $P_{i} \neq 0$ such that:

$$
\text { (a) } \mid \prod_{i=1}^{r} P_{i}
$$

Assume that r is minimal with this property. Then since P is prime we get that for some i :

$$
P|(a) \Longrightarrow P| P_{i}
$$

and assume that $i=1$. However since $P_{1} \neq 0$ it is maximal (Since R was Dedekind) so we have that $P=P_{1}$. Moreover we have: $(a) \varsubsetneqq P$ i.e. (a) does not divide $P=P_{1} \Longrightarrow r \geq 2$. Since r was minimal (a) does not divide P_{2}, \cdots, P_{r}. Hence there exists some $b \in P_{1} \cdots P_{r}$ which is not in (a) i.e. $\quad a^{-1} \notin R$. On the other hand:

$$
b P \subset P P_{2} \cdots P_{r}=P_{1} \cdots P_{r}
$$

And thus :

$$
a^{-1} b P \subset R \Longrightarrow a^{-1} n \in P^{-1}
$$

yielding $R \varsubsetneqq P^{-1}$.
Now for the general case: Let $I \neq 0$ be an ideal.
Claim: $I \subsetneq I P^{-1}$, only have to show that $I \neq I P^{-1}$ Assume: $I=I P^{-1}$
Since R is Noetherian have that $I=\left(a_{1}, \ldots, a_{n}\right)$ for $a_{i} \in R$. For each $x \in P^{-1}$ we get that:

$$
x a_{i}=\sum_{j=1}^{n} r_{i j} a_{j}
$$

Consider the AMtrix:

$$
M=\left(x \delta_{a c}-r_{i j}\right)_{i, j}
$$

we see that:

$$
M\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=0
$$

For $d=\operatorname{det} M$ we get :

$$
d\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=M^{*} M\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=0
$$

Hence $d=0$ since $I \neq 0$. Hence x is a zero of the monic polynomial:

$$
f(t):=\operatorname{det}\left(T \operatorname{id}-\left(r_{i} j\right)\right) \in R[T]
$$

so $x \in K$ is integral over R and since R is integrally closed we have in fact $x \in R$. So we've seen that $P^{-1} \subset R$ so that $P^{-1}=R$ which is a contradiction to what we've shown in the first special case.

Remark 2.9. 1. By Theorem 2.3. (does not match) any ideal $0 \neq I \neq R$ in a Dedekind ring R can be written as :

$$
I=\prod_{i=1}^{r} \mathfrak{P}_{i}^{\nu_{i}}
$$

where the \mathfrak{P}_{i} are the pairwise different prime ideals dividing I. This decomposition is unique up to ordering.
2. For ideals $I, J \notin\{0, R\}$ in any ring R we have:

$$
I+J=R \Longleftrightarrow \text { There is no prime ideal } P \text { such that } P \mid a \text { and } P \mid J
$$

The ideals I in a ring R always form a commutative monoid under multiplication. If R is a Dedekind ring, using the more general construct of fractional ideals this monoid embeds into a group as follows:

Definition 2.10. Let R be a Dedekind ring, K its Quotient field. A fractional ideal of K is a finitely generated R-submodule $I \neq 0$ of K.

Remark 2.11. Let $0 \neq I \subset K$ be an R-submodule. Then I is a fractional ideal of K if and only if there exists some $0 \neq c \in R$ such that $c T \subset R$

Proof. If I is afractional ideal then it is generated by some elements $a_{1}, \ldots, a_{n} \in K$. choose some $0 \neq c \in R$ with $c a_{i} \in R$ for all i and so $c I \subset R$.
For the other direction assume that $c I \subset R$, since R is Noetherian the ideal $c I$ is finitely generated. The isomorphism of R-modules $I \xrightarrow{c c} c I$ shows that I is also finitely generated.

Example 2.12. For $a \in K^{\times}$we see that $(a):=a R$ is a fractional ideal.
In the discussion before the last Theorem we defined a multiplication on the set of R-submodules of K. The product of two fractional ideals is again a fractional ideal and we get a monoid. More is true:

Theorem 2.13. Let R be a Dedekind ring with fraction field K. Then the monoid of fractional ideals of K is a group, called the ideal group \mathfrak{J}_{K} of K. The unit is given by R and the inverse of $I \subset K$.

$$
I^{-1}\{x \in K \mid x I \subset R\}
$$

Proof. I fractional implies that there exits some $0 \neq c \in R$ with $c I \subset R$, hence $c \in I^{-1} \neq 0$. Claim I^{-1} is finitely generated.
Have $I=\left(a_{1}, \ldots a_{n}\right)$ with wlog $a_{1} \neq 0$. By definition we have $x a_{1} \in R$ for all $x \in I^{-1}$ hence $a_{1} I^{-1} \subset R$ which is an ideal an thus finitely generated i.e. $a_{1} I^{-1}=\left(b_{1},{ }^{\prime} \ldots b_{m}\right)$ for some $b_{i} \in R$. Hence $\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{m}}{a_{1}}$ generates i^{-1} as an R-module. So we've shown that if I is a fractional ideal so is I^{-1} which actually holds in any Dedekind domain.
Claim: For a fractional ideal I we have that $I I^{-1}=R$
We show this in three steps:

1. For $I=P$ a nonzero prime ideal. Then we've shown that $P \subseteq P P^{-1} \subset R$ so $P P^{-1}=R$ since P was prime.
2. For any ideal $0 \neq I \varsubsetneqq R$ we write I as a product of prime ideals:

$$
I=\prod_{i=1}^{r} \mathfrak{P}_{i}
$$

Set $J=\prod_{i=1}^{r} \mathfrak{P}_{i}^{-1}$. Then by (1) we have that $J I=R$. Also have that $J \subset I^{-1}$ by definition of the latter. For $x \in I^{-1}$ have that $x I \subset R$ so that $x J I \subset J$ but $x J=x R$ and consequently $x \in J$, i.e. $I^{-1} \subset J$.
3. For a fractional ideal $I \in K$ there exits some $0 \neq x \in R$ with $x I \subset R$. For the ordinary ideal $c I$ we have seen in (2) that $(c I)(c I)^{-1}=R$. It's easy to see that $(c I)^{-1}=c^{-1} I^{-1}$ and so $I I^{-1}$.

We showed that fractional ideals have the form $\mathcal{L}=c^{-1} I$ for some $0 \neq c \in R$ and some ideal $I \subset R$.

Remark 2.14. Every fractional ideal \mathcal{L} of K has a unique representation

$$
\mathcal{L}=\prod \mathfrak{P}^{\nu_{\mathfrak{F}}} \quad \nu_{\nu_{\mathfrak{F}}} \in \mathbb{Z}
$$

where $\nu_{\mathfrak{F}}=0$ for almost all \mathfrak{P} and the product runs over all prime ideals $\neq 0$ of R. Thus the group of fractional ideals \mathcal{J}_{K} is a free abelian group on the set of non-zero primes of R.

Proof. There exists some $0 \neq c \in R$ with $c \mathcal{L}$ subset R. Write

$$
(c)=\prod \mathfrak{P}^{r_{\mathfrak{p}}} \quad r_{\mathfrak{P}} \in \mathbb{Z}_{\geq 0}
$$

and:

$$
c \mathcal{L}=\prod \mathfrak{P}^{s_{\mathfrak{F}}} \quad s_{\mathfrak{P}} \in \mathbb{Z}_{\geq 0}
$$

Hence we get that:

$$
\mathcal{L}=c^{-1}(c \mathcal{L})=\prod \mathfrak{P}^{s_{\mathfrak{p}}-r_{\mathfrak{F}}}
$$

and setting $\nu_{\mathfrak{F}}=s_{\mathfrak{F}}-r_{\mathfrak{F}} \in \mathbb{Z}$ gives existence. Uniqueness follows from multiplying any factorization with c.

Definition 2.15. A fractional ideal is called principal if it is free of rank one i.e. $=a R$. These form a subgroup \mathcal{P}_{K} of \mathcal{J}_{K} The quotient:

$$
\mathrm{Cl}_{K}:=\mathcal{J}_{K} / \mathcal{P}_{K}
$$

Is called the ideal class group of R
We have the basic exact sequence:

$$
1 \rightarrow R^{\times} \rightarrow K^{\times} \rightarrow \mathcal{J}_{K} \rightarrow \mathrm{Cl}_{K} \rightarrow 1
$$

So the "difference" between working with numbers $a \in K^{\times}$and fractional ideals is controlled by the units R^{\times}and the class group of Cl_{K}. If $R=\mathcal{O}_{K}, K / \mathbb{Q}$ a number field then it is known that:

1. R^{\times}is a finitely generated abelian group (Dirichlet unit theorem)
2. Cl_{K} is finite

We will prove this in the next section using Minkowskis "geometry of numbers".
One more remark: In modern algebraic geometry the Class group is interpreted as $H^{1}\left(\operatorname{Spec}(R), \mathcal{O}^{\times}\right)$ the Picard group of the scheme $\operatorname{Spec}(R)$.

3 Minkowski Theory

Recall: A subset D of a topological space is called discrete if for every point $x \in D$ there is an open there is an open subset $x \in U \subset X$ such that $D \cap U=\{x\}$.

Example 3.1. $\quad-\mathbb{Z} \subset \mathbb{R}$ is discrete and closed

- $D=\left\{\left.\frac{1}{n} \right\rvert\, n \geq 1\right\}$ is discrete in R [but not closed since $\bar{D}=D \cup\{0\}$]

Proposition 3.2. Let X be a Hausdorff space and let $D \subset X$ be discrete and closed. Then for every compact subset $K \subset X$ the intersection $D \cap K$ is finite.

Proof. Since D is discrete we have for all $x \in U_{x} \subset X$ with $D \cap U_{x}=\{x\}$. Since D is closed $X \backslash D$ is open and hence:

$$
(X \backslash D) \cup \bigcup_{x \in D} U_{x}=X
$$

is an open covering thus since K is compact there exits $x_{1}, \ldots, x_{n} \in D$ such that $K \subset(X \backslash D) \cup$ $U_{x_{1}} \cup \ldots U_{x_{n}}$ so we get that:

$$
D \cap K \subset\left(D \cap U_{x_{1}}\right) \cup \cdots \cup\left(D \cap U_{x_{n}}\right)=\left\{x_{1}, \ldots, x_{n}\right\}
$$

We will be interested in discrete subgroups Γ in finite dimensional \mathbb{R}-vector spaces V.
Remark 3.3. 1. $\mathbb{Z}^{m} \subset \mathbb{R}^{n}$ is a discrete subgroup.
2. $\mathbb{Z}[i]=\mathcal{O}_{\mathbb{Q}(i)} \subset \mathbb{C}$ is a discrete subgroup.
3. $\mathbb{Z}[\sqrt{2}]=\mathbb{Z} \oplus \mathbb{Z} \sqrt{2} \subset \mathbb{R}$ is a subgroup but not discrete.

Fact: Any discrete subgroup $\Gamma \subset V$ is in fact closed.

Choose a norm $\|-\|$ on V and for $v \in V$ let:

$$
U_{\varepsilon}(v)=\{w \in V \mid\|v-w\|<\varepsilon\}
$$

which induces a topology on V as usual which does not depend on the choice of norm, since all norms on finite dimensional \mathbb{R}-vector spaces are equivalent.

Proof of Fact. Since $\Gamma \subset V$ is discrete there exists $\varepsilon>0$ such that $\Gamma \cap U_{\varepsilon}(0)=\{0\}$. Assume $\gamma_{n} \rightarrow v$ is a convergent sequence with members $\gamma_{n} \in \Gamma$. Then $\left(\gamma_{n}\right)$ is a Cauchy sequence, hence there is some $N=N_{\varepsilon}$ such that:

$$
\left\|\gamma_{n}-\gamma_{m}\right\|<\varepsilon \quad \text { for } m, n \geq N
$$

i.e. $\gamma_{n}-\gamma_{m} \in \Gamma \cap U_{\varepsilon}(0)=\{0\}$. Thus $\gamma_{n}=\gamma_{m}$ for $m, n \geq N$ so $v=\gamma_{N} \in \Gamma$, so Γ is closed.(Here we've used that V is first countable so that we can check closedness via sequences).

Questions: How to decide whether a given subgroup $G a m m a \subset V$ is discrete? How do the discrete subgroups of V look?

Theorem 3.4. A subgroup $\Gamma \subset V$ with $\operatorname{dim}_{\mathbb{R}} V<\infty$ is discrete iff there are \mathbb{R}-linearly independent vectors $v_{1}, \ldots, v_{m} \in V$ which generate Gamma as a group. in This case we have that $\Gamma \cong \bigoplus_{i} \mathbb{Z} v_{i}$ is a free \mathbb{Z}-module of rank $m \leq n$.

Remark 3.5. In our examples $\mathbb{Z}[\sqrt{2}]$ is a free \mathbb{Z}-module of rank $2>1=n$. Hence it cannot be discrete by the theorem. Note that $1, \sqrt{2}$ are \mathbb{Z}-linearly independent but not \mathbb{R}-linearly.

Proof. If Γ is generated by \mathbb{R}-linearly independent $v_{1}, \ldots, v_{m} \in V$ choose $v_{m+1}, \ldots, v_{n} \in V$ such that the v_{i} form a basis of V. We show that $\Gamma \subset V$ is discrete. For

$$
\gamma=\sum_{i=1}^{m} k_{i} v_{i} \in \Gamma
$$

Set:

$$
U\left\{\sum_{i=1}^{n} x_{i} v_{i} \left\lvert\, x_{i} \in\left(k_{i}-\frac{1}{2}, k_{i}+\frac{1}{2} \text { for } 1 \leq i \leq m \text { and } x_{i} \in \mathbb{R}\right\}\right.\right.
$$

Then $U \subset V$ is open, $\gamma \in U$ and in fact $\Gamma \cap U=\{\gamma\}$.
Let $\Gamma \subset V$ be discrete. Let $V^{\prime}=\langle\Gamma\rangle$ be the \mathbb{R}-subspace generated by Γ and write $m=\operatorname{dim} V^{\prime}$. Then there is an \mathbb{R}-basis v_{1}, \ldots, v_{m} of V^{\prime} such that $v_{i} \in G a m m a$ for all i [Indeed, choose a basis $v_{1}^{\prime}, \ldots v_{m}^{\prime}$ of V^{\prime}, then each v_{i}^{\prime} is an \mathbb{R}-linear combination of finitely many vectors in Γ. Thus a finite set of vectors in Γ generates V^{\prime}, so we take a maximal set of linearly independent vectors from this set to get a basis of V^{\prime} consisting of vectors in $\left.\Gamma\right]$. Set $\Gamma^{\prime}=\bigoplus_{i} \mathbb{Z} v_{i} \subset \Gamma$, then we claim that:

$$
\operatorname{card}\left(\Gamma / \Gamma^{\prime}\right)<\infty
$$

To see this write:

$$
\Gamma=\coprod_{i \in I} \gamma_{i}+\Gamma^{\prime}
$$

where the $\gamma_{i} \in \Gamma$ for $i \in I$ are a system of representatives for Γ / Γ^{\prime}. For the "fundamental domain":

$$
\Phi:=\left\{x_{1} v_{1}+\ldots x_{m} v_{m} \mid 0 \leq x_{i}<1\right\}
$$

we have that:

$$
V^{\prime}=\coprod_{\gamma^{\prime} \in \Gamma^{\prime}} \gamma^{\prime} \Phi
$$

Hence $\gamma_{i}=\gamma_{i}^{\prime}+\mu_{i}$ with $\gamma^{\prime} \in \Gamma^{\prime}$ and $\mu_{i} \in P h i$, so $\mu_{i} \in \Gamma \cap \Phi$. Since Γ is discrete and closed in V and since $\bar{\Phi}$ is compact, the set $\Gamma \cap \bar{\Phi}$ is finite as we showed earlier. Hence the set of classes

$$
\operatorname{gamma}_{i}+\Gamma^{\prime}=\mu_{i}+\Gamma^{\prime}, \quad i \in I
$$

is finite i.e. I is finite. Thus $q:=\operatorname{card}\left(\Gamma / \Gamma^{\prime}\right)$ is finite as claimed. In particular we have that $q \Gamma \subset \Gamma^{\prime}$. Therefore

$$
\Gamma \subset \frac{1}{q} \Gamma^{\prime}=\mathbb{Z} \frac{v_{1}}{q} \oplus \cdots \oplus \mathbb{Z} \frac{v_{m}}{q}
$$

Hence Γ is a free \mathbb{Z}-module of rank $r \leq m$, i.e :

$$
\Gamma=\mathbb{Z} w_{1} \oplus \cdots \oplus \mathbb{Z} w_{r}
$$

Since Γ generates the m-dimensional \mathbb{R}-vector space v^{\prime} it follows that $r=m$ and moreover the w_{i} are an \mathbb{R}-basis of V^{\prime}, so in particular they are \mathbb{R}-linearly independent in V.

Remark 3.6. Known: Every abelian group is the class group of some Dedekind Domain. Furthermore every finite abelian group is a quotient of the class group of a cyclotomic extension of \mathbb{Q}.

Definition 3.7. A discrete subgroup Γ of an n-dimensional \mathbb{R}-Vector space V is called a lattice if one of the following equivalent conditions holds:

1. $\mathrm{rk}_{\mathbb{Z}} \Gamma=n$
2. There is an \mathbb{R}-basis of V which generates Γ as an abelian group.
3. There is a bounded (or compact) subset $M \subset V$ such that

$$
V=\bigcup_{\gamma \in \Gamma} \gamma+M
$$

Here the boundedness is defined with respect to some norm on V, which is well defined, since all norms on V are equivalent.
Indeed: We have already seen 1) $\Longleftrightarrow 2$).
Proof. (2) $\Longrightarrow(3)$ By assumption $\Gamma=\bigoplus_{i} \mathbb{Z} v_{i}$ for an \mathbb{R}-basis $\left\{v_{i}\right\}$ of V. The fundamental domain:

$$
\Phi=\left\{v_{1} x_{1}+\cdots+x_{m} v_{m} \mid 0 \leq x_{i}<1\right\}
$$

is bounded and $\bar{\Phi}$ is compact. We have:

$$
V \coprod_{\gamma \in \Gamma} \gamma+\Phi=\bigcup_{\gamma \in \Gamma} \gamma+\Phi
$$

$(3) \Longrightarrow(1)$ Assume that $V=\bigcup_{\gamma \in \Gamma} \gamma+M$ for some bounded $M \subset M$. Let V^{\prime} be the vector space generated by Γ
Claim: $V=V^{\prime}$
Let $v \in V$ for every $k \geq 1$ we have $k v=\gamma_{k}+m_{k}$ with $\gamma_{k} \in \Gamma$ and $m_{k} \in M$. Hence we have:

$$
V=\frac{1}{k} \gamma_{k}+\frac{1}{k} m_{k}
$$

Since M is bounded $\lim _{k \rightarrow \infty} \frac{1}{k} m_{k}=0$ and hence:

$$
v=\lim _{k \rightarrow \infty} \frac{1}{k} \gamma_{k}
$$

Since $\frac{\gamma_{k}}{k} \in V^{\prime}$ which is closed in V, we have $v \in V^{\prime}$. So we get $V \subseteq V^{\prime}$ i.e. $V=V^{\prime}$. It follows that $\operatorname{rk}_{\mathbb{Z}} \Gamma \geq n$. Using our theorem we know that $\mathrm{rk}_{\mathbb{Z}} \Gamma \leq n$ since Γ was by assumption discrete so the rank is in fact $=n$

Remark 3.8. A discrete subgroup $\Gamma \subset V$ is a lattice iff the quotient V / Γ is compact.
Proof. We have that $\Gamma=v_{1} \mathbb{Z} \oplus v_{m} \mathbb{Z}$ where the v_{i} are \mathbb{R}-linearly independent with $m \leq n=\operatorname{dim} V$. We can extend these to a basis $v_{1}, \ldots v_{n}$ of V. then we have that:

$$
\begin{aligned}
V / \Gamma & \cong v_{1} \mathbb{R} \oplus \ldots v_{n} \mathbb{R} / v_{1} \mathbb{Z} \oplus \ldots v_{n} \mathbb{Z} \\
& \cong \mathbb{R} / \mathbb{Z} \times \ldots \mathbb{R} / \mathbb{Z} \times \mathbb{R} \times \cdots \times \mathbb{R} \\
& \cong\left(S^{1}\right)^{m} \times \mathbb{R}^{n-m}
\end{aligned}
$$

Hence this is compact iff $m=n$.
Notation: Let Γ be a lattice in V with \mathbb{Z}-basis v_{1}, \ldots, v_{n}. By our Theorem this is also an \mathbb{R}-basis of V. For the corresponding fundamental domain:

$$
\Phi=\left\{\sum_{i=1}^{n} x_{i} v_{i} \mid 0 \leq x_{i}<1\right\}
$$

We set:

$$
\operatorname{vol}(\Gamma):=\lambda(\Phi)
$$

where λ is the Lebesgue measure on V with respect to the v_{1}, \ldots, v_{n}. In fact this is independent of the choice of v_{i}. Indeed, let w_{1}, \ldots, w_{n} be a another \mathbb{Z}-basis of Γ with corresponding fundamental
domain Ψ. Let M be the matrix with $M\left(v_{i}\right)=w_{i}$ for all i. Then we have $M(\Phi)=\Psi$ and moreover M is unimodular i.e. $M \in \mathrm{GL}_{n}(\mathbb{R})$ and

$$
M, M^{-1} \in \mathrm{M}_{n}(\mathbb{Z})
$$

hence we have that:

$$
\operatorname{det} M^{ \pm 1} \in \mathbb{Z} \Longrightarrow \operatorname{det} M \in\{ \pm 1\}
$$

and consequently:

$$
\lambda(\Psi)=\lambda(M(\Phi))=|\operatorname{det} M| \lambda(\Phi)=\lambda(\Phi)
$$

Definition 3.9. A subset $X \subseteq V$ is called centrally symmetric if for all $x \in X$ we have $-x \in X$
Theorem 3.10 (Minkowski's lattice point theorem). Let Γ be a lattice in an n-dimensional euclidean vector space V and let $X \subseteq V$ be a centrally symmetric, convex Borel set. Assume that one of the following conditions holds:

1. $\lambda(X)>2^{n} \operatorname{vol}(\Gamma)$
2. X is compact and $\lambda(X) \geq 2^{n} \operatorname{vol}(\Gamma)$

Then X contains at least one point $0 \neq \gamma \in \Gamma$.
Example 3.11. $\Gamma=\mathbb{Z}^{2} \subset \mathbb{R}^{2}, e_{1}=(1,0), e_{2}=(0,1), \Phi=(0,1)^{2}$, $\operatorname{vol}(\Gamma)=\lambda(\Phi)=1$ Then the condition in the theorem means that $\lambda(X)>2^{2}=4$. For our choice we have $\lambda(X)=4$ but $X \cap \mathbb{Z}^{2}$, which shows that the strictness of the inequality is necessary in the non-compact case. In fact this counterexample works in every dimension.
Proof. It suffices to show that there exist $\gamma_{1} \neq \gamma_{2} \in \Gamma$ with:

$$
D=\left(\gamma_{1}+\frac{1}{2} X\right) \cap\left(\gamma_{2}+\frac{1}{2} X\right)
$$

Namely if $\xi \in D$ then:

$$
\xi=\gamma_{1}+\frac{12}{2} x_{2}=\gamma_{1}+\frac{1}{2} x_{2}
$$

with $x_{1}, x_{2} \in X$. The point:

$$
0 \neq \gamma:=\gamma_{1}-\gamma_{2}=\frac{1}{2} x_{2}-\frac{1}{2} x_{1}
$$

lies on the line from $x_{2} \in X$ to $-x_{1} \in X$, hence since X is convex we have $\gamma \in X$. Assume that the sets $\gamma+\frac{1}{2} X$ for $\gamma \in$ Gamma are pairwise disjoint. Then we have:

$$
\begin{aligned}
\Gamma=\lambda(\Phi) & \geq \lambda\left(\Phi \cap \coprod_{\gamma \in \Gamma}\left(\gamma+\frac{1}{2} X\right)\right) \\
& =\lambda\left(\coprod_{\gamma \in \Gamma}\left(\Phi \cap\left(\gamma+\frac{1}{2} X\right)\right)\right) \\
& =\sum_{\gamma \in \Gamma} \lambda\left(\Phi \cap\left(\gamma+\frac{1}{2} X\right)\right) \\
& =\sum_{\gamma \in \Gamma} \lambda\left((\Phi-\gamma) \cap \frac{1}{2} X\right) \\
& \geq \lambda\left(\bigcup_{\gamma \in \Gamma}(\Phi-\gamma) \cap \frac{1}{2} X\right) \\
& =\lambda\left(\frac{1}{2} X\right) \quad \text { since } \coprod_{\gamma \in \Gamma} \Phi-\gamma=V \\
& =\left|\operatorname{det}\left(\cdot \frac{1}{2}: V \rightarrow V\right)\right| \lambda(X)=2^{-n} \lambda(X)
\end{aligned}
$$

This is a contradiction to the assumption $\lambda(X)>2^{-n} \operatorname{vol}(\Gamma)$. This shows (i)
For (ii) and $\nu \geq 1$ set $X_{\nu}:=\left(1+\frac{1}{\nu} X\right)$ Then X_{ν} is still a centrally symmetric, convex Borel set. Furthermore we have:

$$
\lambda(X)=\left(1+\frac{1}{\nu}^{n} \lambda(X)>\lambda(X)\right) \geq 2^{-n} \operatorname{vol}(\Gamma)
$$

By (i) we therefore get that $X_{\nu} \cap(\Gamma \backslash\{0\} \neq \varnothing)$. Now since X is compact and hence closed we see that:

$$
\bigcap_{\nu \geq 1} X_{\nu}=X
$$

now the sets $X_{\nu} \cap(\Gamma \backslash\{0\})$ are closed in V and hence in X_{1}. Since X was compact so is X_{1} and we get that the following intersection of non-empty closed sets:

$$
\bigcap_{\nu \geq 1} X_{\nu}(\Gamma \backslash\{0\})=X \cap(\Gamma \backslash\{0\})
$$

is again non-empty.
Let K / \mathbb{Q} be a number field of degree n. We know that there are m pairwise different embeddings:

$$
\sigma: K \hookrightarrow \mathbb{C}
$$

Let $c: \mathbb{C} \rightarrow \mathbb{C}$ be the complex conjugation, then if σ is an embedding $\bar{\sigma}:=c \circ \sigma$ is an embedding. We call σ a real embedding if $\bar{\sigma}=\sigma$. Denote by r_{1} the number of real embedings of K. The non-real embedings appear in pairs $\sigma, \bar{\sigma}$ hence there is some $r_{2} \in \mathbb{Z}_{\geq 0}$ such that $2 r_{2}$ is the number of non-real embeddings of K. We have that $n=r_{1}+2 r_{2}$ is the total number of embedings. Usual one says "complex" for "non-real". Let $\sigma_{1}, \ldots, \sigma_{r_{1}}$ be the real embeddings and $\sigma_{r_{1}+1}, \ldots, \sigma_{r_{1}+r_{2}}, \bar{\sigma}_{r_{1}+1}, \ldots, \bar{\sigma}_{r_{1}+r_{2}}$ the complex embeddings. Set

$$
\sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{r_{1}}(x), \sigma_{r_{1}+1}(x), \ldots, \sigma_{r_{1}+r_{2}}(x)\right)
$$

The map:

$$
\sigma: K \hookrightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}=\mathbb{R}^{n}
$$

is called the "canonical embedding of K ".
More invariantly this is the map:

$$
K \rightarrow K \otimes_{\mathbb{Q}} \mathbb{R}
$$

Proposition 3.12. Let $M \subset K$ be a free \mathbb{Z}-module of rank n. Then $\sigma(M)$ is a lattice in \mathbb{R}^{n} and we have:

$$
\operatorname{vol} \sigma(M)=2^{-r_{2}}|d(M)|^{\frac{1}{2}}
$$

where $d(M)=\left(\operatorname{det}\left(\left(\sigma_{i}\left(x_{j}\right)\right)_{i, j}\right)^{2}\right.$ for any \mathbb{Z} basis x_{1}, \ldots, x_{n} of M is the discriminant of M.
Proof. Identifying $R^{r_{1}} \times \mathbb{C}^{r_{2}} \cong \mathbb{R}^{n}$ we have:

$$
\sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{r_{!}}, \operatorname{Re} \sigma_{r_{1}+1}(x), \operatorname{Im} \sigma_{r_{1}+1}(x), \ldots, \operatorname{Im} \sigma_{r_{1}+r_{2}}(x)\right.
$$

Let D be the determinant with rows $\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)$ then we have that:

$$
D= \pm(2 i)^{-r_{2}} \operatorname{det}\left(\left(\sigma_{i}\left(x_{j}\right)\right)_{i, j}\right)
$$

[Here's the argument in the case $r_{1}=0, r_{2}=1$ which shows how to proceed in general. In this case $\sigma(x)=\left(\operatorname{Re} \sigma_{1}(x), \operatorname{Im} \sigma_{1}(x)\right.$ and:

$$
D=\left|\begin{array}{l}
\sigma\left(x_{1}\right) \\
\sigma\left(x_{2}\right)
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=\frac{1}{i}\left|\begin{array}{ll}
a_{1} & i b_{1} \\
a_{2} & i b_{2}
\end{array}\right|=\frac{1}{2 i}\left|\begin{array}{ll}
a_{1}+i b_{1} & 2 i b_{1} \\
a_{2}+i b_{2} & 2 i b_{2}
\end{array}\right|=\frac{-1}{2 i}\left|\begin{array}{ll}
\sigma_{1}\left(x_{1}\right) & \bar{\sigma}_{1}\left(x_{1}\right) \\
\sigma_{1}\left(x_{2}\right) & \bar{\sigma}_{2}\left(x_{2}\right)
\end{array}\right|
$$

Thus since $d(M) \neq 0$ we get $D \neq 0$ so the vectors $\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)$ in \mathbb{R}^{n} are \mathbb{R}-linearly independent and hence $\sigma(M)$ is a lattice. Let T be the matrix with rows $\sigma(x) i$. If:

$$
E=\left\{\sum_{i} t_{i} e_{i} \mid 0 \leq t_{i}<1\right\} \subset \mathbb{R}^{n}
$$

then $T(E)$ is a fundamental domain Φ for the lattice $\sigma(M)$ hence:

$$
\begin{aligned}
\operatorname{vol}(\sigma(M)) & =\lambda(T(E))=\operatorname{det}(T) \operatorname{vol}(E) \\
& =\operatorname{det}(T) D=2^{-r 2} \operatorname{det}\left(\sigma_{i}\left(x_{j}\right)\right)=2^{-r_{2}} d(M)^{\frac{1}{2}}
\end{aligned}
$$

Before we can proceed we need the so called norm of an ideal.
Setup:
$\overline{K / \mathbb{Q}}$ number field, $\operatorname{deg}(K / \mathbb{Q})=n, R=\mathcal{O}_{K}, N(x):=\left|N_{K / \mathbb{Q}}(x)\right|$ for $x \in K$
Proposition 3.13. For $x \in R, x \neq 0$ we have that $N(x)=|R / x|$.
Proof. We have that $x R \cong R$ are both free \mathbb{Z}-modules of rank n. By the elementary divisor theorem applied to the inclusion:

$$
R x \subseteq R
$$

there exists a \mathbb{Z}-basis e_{1}, \ldots, e_{n} of the \mathbb{Z}-module R and elements $d_{1}, \ldots, d_{n} \in \mathbb{Z}$ with $d_{i} \geq 1$ such that $d_{1} e_{1}$, dots, $d_{n} e_{n}$ is a basis of $R x$. As abelian groups we therefore have an isomorphism:

$$
R / x \cong \mathbb{Z} / d_{1} \times \cdots \times \mathbb{Z} / d_{n}
$$

so we see that:

$$
|R / x|=d_{1} \cdots d_{n}
$$

Let $\phi_{x}: K \rightarrow K$ be the multiplication by x. Then by definition we had that:

$$
N(x)=\left|\operatorname{det}\left(\phi_{x}\right)\right|
$$

We write $\phi_{x}=\psi \circ \phi$ where:

$$
\begin{aligned}
\phi: K \xrightarrow{\sim} K & \\
e_{i} \mapsto d_{i} e_{i} & \\
& d_{i} e_{i} \mapsto x e_{i}
\end{aligned}
$$

Then $\operatorname{det}(\psi)=d_{1} \cdots d_{n}$ and $\phi(R)=R x$ and moreover $\psi(R x)=R x \operatorname{hence} \operatorname{det}(\psi)= \pm 1$ since ψ is unimodular. Thus we find that:

$$
N(x)\left|\operatorname{det}\left(\phi_{x}\right)\right|=|\operatorname{det}(\psi)||\operatorname{det}(\phi)|=d_{1} \cdots d_{n}=|R / x|
$$

Definition 3.14. For an ideal $0 \neq \mathfrak{a} \subset \mathcal{O}_{K}$ the number:

$$
N\left(\mathfrak{a}:=\left|\mathcal{O}_{K} / \mathfrak{a}\right|\right.
$$

is called the norm of \mathfrak{a}
Remark 3.15. 1. For $0 \neq a \in \mathfrak{a}$ have $\mathcal{O}_{K} a \subset \mathfrak{a}$ hence there is a surjection:

$$
\mathcal{O} / a \rightarrow \mathcal{O}_{K} / \mathfrak{a}
$$

and thus :

$$
N(\mathfrak{a})=\left|\mathcal{O}_{K} / \mathfrak{a}\right|\left|\leq \mathcal{O}_{K} / a\right|=N(a)
$$

is finite.
2. For a principal ideal $\mathfrak{a}=(a)$ we have seen that:

$$
N(\mathfrak{a})=N(a)
$$

Proposition 3.16. For two non-zero ideals $\mathfrak{a}, \mathfrak{b} \subset \mathcal{O}_{K}$ we have that:

$$
N(\mathfrak{a}) N(\mathfrak{b})=N(\mathfrak{a b})
$$

Proof. Since $\mathfrak{b}=\mathfrak{P}_{1} \cdots \mathfrak{P}_{r}$ for some nonzero prime ideals \mathfrak{P}_{i}, it suffices to show that:

$$
N(\mathfrak{a P})=N(\mathfrak{a}) N(\mathfrak{P})
$$

for all nonzero prime ideal $\mathfrak{P} \subset \mathcal{O}_{K}$. Note that these are in particular maximal. Since $\mathfrak{a} \mathfrak{P} \subset \mathfrak{a}$ we have that:

$$
R / \mathfrak{a} \cong R / \mathfrak{a} \mathfrak{Y} / \mathfrak{a} / \mathfrak{a} \mathfrak{P}
$$

as abelian groups, hence we see that:

$$
|R / \mathfrak{a P}|=|R / \mathfrak{a}| \cdot|\mathfrak{a} / \mathfrak{a} / \mathfrak{P}|
$$

i.e.:

$$
N(\mathfrak{a x})=N(\mathfrak{a})|\mathfrak{a} / \mathfrak{a} \mathfrak{P}|
$$

Claim: $|\mathfrak{a} / \mathfrak{a} \mathfrak{P}|=|R / \mathfrak{P}|$ We may view $\mathfrak{a} / \mathfrak{a} \mathfrak{P}$ as a vector space over the (in fact finite) field R / \mathfrak{P}. We have a bijection between ideals $\mathfrak{Q} \subset R$ with $\mathfrak{a} \mathfrak{P} \subset \mathfrak{Q} \subset \mathfrak{a}$ with the R / \mathfrak{P} sub vector spaces of $A / A P$. The unique decomposition into prime ideals implies that either $\mathfrak{Q}=\mathfrak{a}$ or $\mathfrak{Q}=\mathfrak{a} \mathfrak{P}$ hence $\mathfrak{a} / \mathfrak{a P}$ has no non-trivial subspaces thus it is one dimensional i.e. $\mathfrak{a} / \mathfrak{a} \mathfrak{P} \cong R / \mathfrak{P}$ which proves the claim.

Back to Minkowski Theory:

Corollary 3.17. Let K be a number field with discriminant $d=d_{K / \mathbb{Q}}$ and let $\mathfrak{a} \neq 0$ be and ideal in \mathcal{O}_{K}. then $\sigma\left(\mathcal{O}_{K}\right)$ and $\sigma(\mathfrak{a})$ are lattices in \mathbb{R}^{n} under the canonical embedding $\sigma: K \rightarrow \mathbb{R}^{n}$ and moreover we have:

$$
\begin{gathered}
\operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)=2^{-r_{2}}|d|^{1 / 2} \\
\operatorname{vol}(\sigma(\mathfrak{a}))=2^{-r_{2}}|d|^{1 / 2} N(\mathfrak{a})
\end{gathered}
$$

Proof. Since both \mathcal{O}_{K} and \mathfrak{a} are free \mathbb{Z}-modules of $\operatorname{rank} n=\operatorname{deg}(K / \mathbb{Q})$ in K we have already seen that $\sigma\left(\mathcal{O}_{K}\right)$ and $\sigma(\mathfrak{a})$ are lattices and that the formula for $\operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)$. Furthermore we have that:

$$
\mathcal{O}_{K} / \sigma \xrightarrow{\sim} \sigma\left(\mathcal{O}_{K} / \sigma(\mathfrak{a})\right.
$$

hence the index of the lattice $\sigma(\mathfrak{a})$ in the lattice $\sigma\left(\mathcal{O}_{K}\right)$ is $N(\mathfrak{a})$. It follows that:

$$
\operatorname{vol}\left(\sigma(\mathfrak{a})=N(\mathfrak{a}) \operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)\right.
$$

This follows form the following general argument: Let $\Gamma^{\prime} \subset \Gamma \subset V$ be lattices in a euclidean vector space V. Choose a \mathbb{Z}-basis $v_{1}, \ldots, v_{n} \in \Gamma$ such that $d_{1} v_{1}, \ldots, d_{n} v_{n}$ is a \mathbb{Z}-basis opf Γ^{\prime} for suitable $d_{i} \in \mathbb{Z}$ with $d_{i} \geq 1$. Then:

$$
\Gamma / \Gamma^{\prime} \cong \mathbb{Z} / d_{1} \times \cdots \times \mathbb{Z} / d_{n}
$$

hence $\left|\Gamma / \Gamma^{\prime}\right|=d_{1} \cdots d_{n}$ if Ψ is a fundamental domain of Γ. Then $\phi(\Phi)$ is a fundamental domain for Γ^{\prime} where ϕ is the linear map defined via $\phi\left(v_{i}\right):=d_{i} v_{i}$. Thus we get:

$$
\operatorname{vol}\left(\Gamma^{\prime}\right)=\lambda(\phi(\Phi))=|\operatorname{det}(\phi)| \lambda(\Phi)=d_{1} \cdots d_{n} \lambda(\Phi)=\left|\Gamma / \Gamma^{\prime}\right| \operatorname{vol}(\Gamma)
$$

Theorem 3.18. Let K / \mathbb{Q} be a number field of degree $n=r_{1}+2 r_{2}$ and discriminant $d=d_{K / \mathbb{Q}}$. For every ideal $\mathfrak{a} \neq 0$ of \mathcal{O}_{K} there exists some $0 \neq x \in \mathfrak{a}$ with:

$$
\left|N_{K / \mathbb{Q}}(x)\right| \leq\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}}|d|^{1 / 2} N(\mathfrak{a})
$$

Proof. Let $\sigma: K \rightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ be the canonical embedding. For $t>0$ let

$$
X_{t}:=\left\{\left(y_{1}, \ldots, y_{r_{1}}, z_{1}, \ldots, z_{r_{2}} \in \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}\left|\sum_{i=1}^{r_{1}}\right| y_{i}\left|+2 \sum_{j=1}^{r_{2}}\right| z_{j} \mid \leq t\right\}\right.
$$

Then X_{t} is compact, convex and centrally symmetric with:

$$
\lambda\left(X_{t}\right)=2^{r_{1}}\left(\frac{\pi}{2}\right)^{r_{2}} \frac{t}{n!}
$$

Choose t such that:

$$
\lambda\left(X_{t}\right)=2^{n} \operatorname{vol}(\sigma(\mathfrak{a}))
$$

i.e.:

$$
2^{r_{1}}\left(\frac{\pi}{2}\right)^{r_{2}} \frac{t^{n}}{2!}=2^{n-r_{2}}|d|^{1 / 2} N(\mathfrak{a})
$$

equivalently:

$$
t^{n}=2^{n-r_{1}} \pi^{-r_{2}} n!|d|^{1 / 2} N(\mathfrak{a})
$$

so this is solvable. Now by Minkowskis theorem there exits some $0 \neq w \in \sigma(\mathfrak{a}) \cap X_{t}$. Let $0 \neq x \in \mathfrak{a}$ be the element with $\sigma(x)=w$. Using the inequality of the geometric and the arithmetic mean:

$$
\sqrt[n]{a_{1} \cdots a_{n}} \leq \frac{1}{n}\left(a_{1}+\cdots+a_{n}\right) \text { for } a_{i} \geq 0
$$

we find by setting $w_{i+r_{2}}=\bar{w}_{i}$ for $r_{1}+1 \leq i \leq r_{2}$ that:

$$
\begin{aligned}
\left|N_{K / \mathbb{Q}}(x)\right| & =\prod_{i=1}^{n}\left|\sigma_{i}(x)\right|=\prod_{i=1}^{n}\left|w_{i}\right| \\
& \leq\left(\frac{1}{n} \sum_{i=1}^{n}\left|w_{i}\right|\right)^{n} \\
& =\frac{1}{n^{n}}\left(\sum_{i=1}^{r_{1}}\left|w_{i}\right|+2 \sum_{i=r_{1}+1}^{r_{1}+r_{2}}\left|w_{i}\right|\right)^{n} \leq \frac{t^{n}}{n^{n}}
\end{aligned}
$$

Now plugging in our choice of t and the fact that $n=r_{1}+2 r_{2}$ we get the claim.
Corollary 3.19. Let K be a number field of degree $n=r_{1}+n r_{2}$ and discriminant $d=d_{K / \mathbb{Q}}$. Then every ideal class in $\mathrm{Cl}_{K}=\mathcal{J}_{K} / \mathcal{P}_{K}$ contains an ideal $\mathfrak{b} \subset \mathcal{O}_{K}$ such that:

$$
N(\mathfrak{b}) \leq\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}}|d|^{1 / 2}
$$

Proof. Let $\mathfrak{k} \in \mathrm{Cl}_{K}$ and $\mathfrak{a}^{\prime} \in \mathfrak{k}$. We may assume that $\mathfrak{a}=\left(\mathfrak{a}^{\prime}\right)^{-1} \subseteq \mathcal{O}_{K}$. By the previous theorem there exists some $0 \neq x \in \mathfrak{a}$ such that:

$$
|N(x)| \leq\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}}|s|^{1 / 2} N(\mathfrak{a})
$$

By definition of \mathfrak{a}^{-1} we see that $\mathfrak{b}:=x \mathfrak{a}^{-1} \subset \mathcal{O}_{K}$. Moreover $\mathfrak{b}=(x) \mathfrak{a}^{\prime} \in \mathfrak{k}$ and:

$$
N(\mathfrak{b})=N(x) N\left(\mathfrak{a}^{\prime}\right)=|N(x)| N(\mathfrak{a})^{-1} \leq\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}}|d|^{1 / 2}
$$

Corollary 3.20. Let K / \mathbb{Q} be a number field of degree n with discriminant d, then for $n \geq 2$ we have:

$$
|d| \geq \frac{\pi}{3}\left(\frac{3 \pi}{4}\right)^{n-1} \equiv n \leq \frac{\log (|d|)+\log \left(\frac{9}{4}\right)}{\log \left(\frac{3 \pi}{4}\right)}
$$

and hence:

$$
n \leq C \log (|d|)
$$

for some constant independent of K.
Proof. In the previous corollary we have $N(\mathfrak{b}) \geq 1$ and hence:

$$
|d| \geq\left(\frac{\pi}{4}\right)^{2 r_{2}} \frac{n^{2 n}}{(n!)^{2}} \geq\left(\frac{\pi}{4}\right)^{n} \frac{n^{2 n}}{(n!)^{2}}=: a_{n}
$$

and hence using the binomial formula we get:

$$
\frac{a_{n+1}}{a_{n}}=\frac{\pi}{4}\left(1+\frac{1}{n}\right)^{2 n} \geq \frac{\pi}{4}\left(1+2 n \frac{1}{n}+\geq 0\right) \geq \frac{3 \pi}{4}
$$

and thud:

$$
|d| \geq \frac{\pi^{2}}{4}\left(\frac{3 \pi}{4}\right)^{n-2}=\frac{\pi}{3}\left(\frac{3 \pi}{4}\right)^{n-1}
$$

As an obvious consequence we get:
Theorem 3.21 (Hermite-Minkowski). For every number field $K \neq \mathbb{Q}$ we have that $\left|d_{K / \mathbb{Q}}\right| \geq 2$
Theorem 3.22. For every number field K / \mathbb{Q} the class number $L_{K}=\left|\mathrm{Cl}_{K}\right|$ is finite
Proof. It suffices to show that for every integer $N \geq 1$ there are only finitely many ideals $\mathfrak{b} \subset \mathcal{O}_{K}$ with $N(\mathfrak{b})=N$. Since $\left|\mathcal{O}_{K} / \mathfrak{b}=N(\mathfrak{b})=N\right|$ we have that $N=0 \in \mathcal{O}_{K} / \mathfrak{b}$ i.e. $N \mathcal{O}_{K} \subset \mathfrak{b}$. Now let $\mathfrak{P}_{1} \cdots \mathfrak{P}_{r}$ be the the prime decomposition of $N \mathcal{O}_{K}$ into prime ideals. Then the possible ideals \mathfrak{b} are precisely the partial products of the ideals \mathfrak{P}_{i} and thus there are only finitely many.

Theorem 3.23 (Hermite). There are only finitely many number fields for a given discriminant.
Proof. Fix some $d \in \mathbb{Z}$, then if $d_{K / \mathbb{Q}}=d$ there are only finitely many possibilities of $n=\operatorname{deg} K / \mathbb{Q}$ and hence for r_{1}, r_{2}. Therefore it suffices to prove the following assertion:
Given d, n, r_{1}, r_{2} there are only finitely many number fields K with:

$$
\left.d_{K / \mathbb{Q}}=d, \operatorname{deg}(K / \mathbb{Q})=n, r_{1}(K)=r\right)_{1}, r_{2}(K)=r_{2}
$$

To see this consider the following subset $B \subset \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$:
1.Case If $r_{1} \geq 1$ set:

$$
B=\left\{(x, z) \in \mathbb{R}^{r_{1}} \times\left.\mathbb{C}^{r_{2}}| | y_{1}\left|\leq 2^{n}\left(\frac{2}{\pi}\right)^{r_{2}}\right| d\right|^{1 / 2},\left|y_{i}\right| \leq \frac{1}{2} i>1,\left|z_{j}\right| \leq \frac{1}{2} j \geq 1\right\}
$$

2.Case If $r_{1}=0$ set:

$$
B=\left\{\left.z \in \mathbb{C}^{r_{2}}| | \operatorname{Im}\left(z_{!}\right)\left|\leq 2^{n}\left(\frac{2}{\pi}\right)^{r_{2}-1}\right| d\right|^{1 / 2},\left|\operatorname{Re}\left(z_{1}\right)\right| \leq \frac{1}{4},\left|z_{j}\right| \leq \frac{1}{2} 2 \leq j \leq r_{2}\right\}
$$

then B is closed, convex and centrally symmetric of Lebesgue measure:

$$
\lambda(B)=2^{n+1-r_{2}}|d|^{1 / 2}
$$

Now let $\sigma: K \hookrightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ be the canonical embedding. We have that:

$$
\operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)=2^{-r_{2}}|d|^{1 / 2}
$$

and hence:

$$
\lambda(B)=2^{n+1} \operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)>2^{n} \operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)
$$

Then there exists some $0 \neq x \in \mathcal{O}_{K}$ with $\sigma(x) \in B$.
Claim 1: $K=\mathbb{Q}(x)$
(This is equivalent to asking that $\sigma_{i}(x) \neq \sigma_{j}(x)$ for $i \neq j$)
1.Case If $r_{1} \geq 1$ consider the inequality:

$$
1 \leq|N(x)|=\prod_{i=1}^{n}|\sigma(x)|
$$

by definition of B we have that $\sigma_{i}(x) \leq 1 / 2$ for $i \geq 2$ and hence we get:

$$
\left|\sigma_{1}(x)\right| \geq 2^{n-1} \geq 1
$$

Thus $\sigma_{1}(x) \neq \sigma_{i}(x)$ for all $i \geq 2$. Now take a Galois extension $K \subset L \subset \mathbb{C}$, then applying the automorphisms of L to the inequalities we find that:

$$
\sigma_{\nu}(x) \neq \sigma_{\mu}(x)
$$

for all $\nu \neq \mu$ and hence x is primitive.
2.Case If $r_{1}=0$ we may assume that in our ordering $\sigma_{1}, \ldots, \sigma_{n}$ we have that $\sigma_{2}=\bar{\sigma}_{1}$. By definition of B we then have $\sigma_{i}(x) \leq 1 / 2$ for $3 \leq i \leq n$ and so we get that:

$$
\left|\sigma_{1}(x)^{2}\right|=\left|\sigma_{1}(x)\right|\left|\sigma_{2}(x)\right| \geq 2^{n-2} \geq 1
$$

and hence $\left|\sigma_{1}(x)\right|=\left|\sigma_{2}(x)\right| \geq 1$ and therefore $\sigma_{1}(x) \neq \sigma_{i}(x)$ for $3 \leq i \leq n$. Thus it remains to show that $\sigma_{1}(x) \neq \sigma_{2}(x)=\bar{\sigma}_{1}(x)$. By definition of B we have that $\operatorname{Re}\left(\sigma_{1}(x)\right) \leq 1 / 4$. Since $\left|\sigma_{1}(x)\right| \geq 1$ we see that $\sigma_{1}(x) \neq \operatorname{Re}\left(\sigma_{1}(x)\right)$ i.e. that $\sigma_{1}(x) \notin \mathbb{R}$ ans so $\sigma_{1}(x) \neq \bar{\sigma}_{1}(x)$ as claimed.

Using Claim 1 the theorem will follow from:
Claim 2: Given d, n, r_{1}, r_{2} the set of algebraic integers $x \in \mathbb{C}$ which arise from the construction above is finite.
Indeed: By construction of our set B there is a constant $C\left(d, n, r_{2}\right)$ such that $\left|\sigma_{i}(x)\right| \leq C$ for all $1 \leq i \leq n$. Consider the minimal polynomial of x :

$$
m_{x}(T)=\prod_{i=1}^{n}\left(T-\sigma_{i}(x)\right)=\sum_{\nu=0}^{n} c_{\nu} T^{\nu}
$$

with $c_{\nu} \in \mathbb{Z}$ since $x \in \mathcal{O}_{K}$. Furthermore these c_{ν} are the elementary symmetric functions of $\sigma_{1}(x), \ldots, \sigma_{n}(x)$. Hence there is another constant $D=D\left(d, n, r_{2}\right)$ such that $\left|c_{\nu}\right| \leq D$ for all $0 \leq \nu \leq n$. Hence there are at most $(2 D+1)^{n+1}$ possibilities for $m_{x}(T)$ and hence for x.

Next we study the structure of the group of units \mathcal{O}_{K}^{\times}for a number field K. The basic result is this:

Theorem 3.24 (Dirichlet's unit theorem). For a number field K set $r=r_{1}+r_{2}-1$ Then we have:

$$
\mathcal{O}_{K}^{\times} \cong \mu_{K} \times \mathbb{Z}^{r}
$$

Where μ_{K} is the finite cyclic group of roots of unity in K. Thus there are r units $\eta_{1}, \ldots, \eta_{r} \in \mathcal{O}_{K}$ such that every unit $u \in \mathcal{O}_{K}^{\times}$has a unique representation of the form:

$$
u=\zeta \eta_{1}^{n_{1}} \ldots \eta_{r}^{n_{r}}, \quad n_{i} \in \mathbb{Z}, \quad \zeta \in \mu_{K}
$$

Remark 3.25. Except in special cases there are no known explicit formulas for the generators of the free part (called fundamental units)

Example 3.26. 1. K imaginary quadratic $r=0+1-1=0$, hence $\mathcal{O}_{K}^{\times}=\mu_{K}$
2. K real quadratic, $r=2+0-1=1$ hence:

$$
\mathcal{O}_{K}^{\times} \cong \mu_{K} \times \mathbb{Z}=\{ \pm 1\} \times \mathbb{Z}
$$

3. $K=\mathbb{Q}\left(\zeta_{p}\right)$ for $p \geq 3$ and ζ_{p} a primitive p-th root of unity. Then $r_{1}=0, r_{2}=\frac{p-1}{2}$ i.e. $r=\frac{p-3}{2}$ and therefore:

$$
\mathcal{O}_{K}^{\times} \cong \mu_{2 p} \times \mathbb{Z}^{\frac{p-3}{2}}
$$

Proof. We first show that \mathcal{O}_{K}^{\times}is a finitely generated abelian group and then we determine the rank. For this consider the so called logarithmic embedding:

$$
\begin{aligned}
L & : K^{\times} \rightarrow \mathbb{R}^{r_{1}+r_{2}} \\
L(x) & =\left(\log \left(\left|\sigma_{1}(x)\right|\right), \ldots, \log \left(\left|\sigma_{r_{1}+r_{2}}(x)\right|\right)\right.
\end{aligned}
$$

which one obtains from the canonical embedding σ.
Claim 1 Let $B \subset \mathbb{R}^{r_{1}+r_{2}}$ be bounded, then the set:

$$
B^{\prime}:=L^{-1}(B)
$$

is finite

Proof. Since B is bounded there exist $\varepsilon>0, C>0$ such that for all $x \in B p$ we have:

$$
\varepsilon \leq\left|\sigma_{i}(x)\right| \leq C
$$

for $i=1, \ldots, r_{1}+r_{2}$ and hence for all $i=1, \ldots, n$. Now let:

$$
m_{x}(T)=\sum_{\nu=0}^{d_{x}} c_{\nu} T^{\nu}
$$

be the minimal polynomial of x. Then we have that:
(a) $d_{x} \leq n=\operatorname{deg}(K / \mathbb{Q})$
(b) $m_{x}(T) \in \mathbb{Z}[T]$ since $x \in \mathcal{O}_{K}$
(c) There is a constant $D=D_{K, B}$ such that

$$
\left|c_{\nu}\right| \leq D \text { for } 0 \leq \nu \leq d_{x}
$$

since the c_{ν} are the elementary symmetric functions of a subset of $\sigma_{1}(x), \ldots, \sigma_{n}(x, y)$. Hence there are only finitely many possibilities for $m_{x}(T)$ so also for x.

Consequences:

(a) The subgroup $\Gamma=L\left(\mathcal{O}_{K}^{\times} \subset \mathbb{R}^{r_{1}+r_{2}}\right.$ is discrete
(b) $\operatorname{ker} L=\mu_{K}$ is a finite cyclic subgroup of \mathcal{O}_{K}^{\times}

Proof. ad (a): Fix a norm on $\mathbb{R}^{r_{1}+r_{2}}$. for $v \in \Gamma$ the $\varepsilon=1$ ball $U_{1}(v)$ contains only finitely many elements of Γ by Claim 1. For small enough $0<\varepsilon \leq 1$ we therefore have:

$$
U_{\varepsilon}(v) \cap \Gamma=\{v\}
$$

thus Γ is discrete.
ad (b): For $B=\{0\}$ Claim 1 asserts that the following subgroup of \mathcal{O}_{K}^{\times}is finite:

$$
\begin{gathered}
\left\{x \in \mathcal{O}_{K}^{\times} \mid L(x)=0\right\} \\
\left\{x \in \mathcal{O}_{K}^{\times}| | \sigma_{i}(x) \mid=1 \text { for all } 1 \leq i \leq n\right\}
\end{gathered}
$$

Hence:

$$
\operatorname{ker}\left(\left.L\right|_{\mathfrak{O}_{K}^{\times}} \subset \mu_{K}\right)
$$

since all elements have finite order. ON the other hand for $\zeta \in \mu_{K}$ we have in fact $\zeta \in \mathcal{O}_{K}^{\times}$ since ζ, ζ^{-1} are roots of the monic polynomial $T^{n}-1$. Moreover $\sigma_{i}(\zeta)$ is again a root of unity in \mathbb{C} and thus $\left|\sigma_{i}(\zeta)\right|=1$ for all i i.e. we see that $\zeta \in \operatorname{ker}\left(\left.L\right|_{\mathcal{O}_{K}^{\times}}\right)$. So in conclusion

$$
\operatorname{ker}\left(\left.L\right|_{\mathcal{O}_{K}^{\times}}\right)=\mu_{K}
$$

and this group is finite. Furthermore all finite subgroups of K^{\times}are cyclic.
Now the discrete subgroup $\Gamma=L\left(\mathcal{O}_{K}^{\times}\right) \subset \mathbb{R}^{r_{1}+r_{2}}$ is free of rank $\leq r_{1}+r_{2}$. Since $\mu_{K} \subset \mathcal{O}_{K}^{\times}$is finite and L induces an isomorphism:

$$
\mathcal{O}^{\times} / \mu_{K} \xrightarrow{\sim} \Gamma
$$

the abelian group \mathcal{O}_{k}^{\times}is finitely generated of rank $\leq r_{1}+r_{2}$ with torsion part μ_{K}. In fact more is true:

1. Claim 2: We have $\operatorname{rkO}_{K}^{\times} \leq r_{1}+r_{2}-1=r$

Proof. For $x \in \mathcal{O}_{K}^{\times}$we know that:

$$
N_{K / \mathbb{Q}}(x) \in \mathbb{Z}^{\times}\{ \pm 1\}
$$

$$
1=\prod_{i=1}^{n}\left|\sigma_{i}(x)\right|=\prod_{i=1}^{r_{1}}\left|\sigma_{i}(x)\right| \prod_{i=r_{1}+1}^{r_{1}+r_{2}}\left|\sigma_{i}(x)\right|^{2}
$$

and therefore:

$$
0=\sum_{i=1}^{r_{1}} \log \left(\left|\sigma_{i}(x)\right|\right)+2 \sum_{i=r_{1}+1}^{r_{2}+r_{1}} \log \left(\sigma_{i}(x)\right)
$$

Thus the discrete subgroup $\Gamma=L\left(\mathcal{O}_{K}^{\times}\right)$lies in the hyperplane:

$$
W=\left\{y \in \mathbb{R}^{r_{1}+r_{2}} \mid \sum_{i=1}^{r_{1}} y_{i}+2 \sum_{i=r_{1}+1}^{r_{1}+r_{2}} y_{i}=0\right\}
$$

Since Γ is discrete in $\mathbb{R}^{r_{1}+r_{2}}$ it also discrete in W and we get that:

$$
\mathrm{rk} \Gamma \leq \operatorname{dim} W=r=r_{1}+r_{2}-1
$$

$\underline{\text { Claim 3 }}$ In fact $\mathrm{rk} \mathcal{O}_{K}^{\times}=\mathrm{rk} \Gamma=r$ i.e. Γ is a lattice in W. This will follow from:
Claim 3^{*} For any $0 \neq \phi \in W^{\vee}$ there exists some $u \in \mathcal{O}_{K}^{\times}$with $\phi(L(u)) \neq 0$ Indeed: Suppose we have shown this and denote by $\langle\Gamma\rangle=W$ the \mathbb{R}-subvectorspace generated by Γ. Since Γ is a discrete subgroup in W we know that:

$$
\mathrm{rk}=\operatorname{dim}_{\mathbb{R}}\langle\Gamma\rangle
$$

Now if $\mathrm{rk} \Gamma<r$ (i.e. Clam 3 is wrong), then $W /\langle W\rangle \neq 0$ and hence there is a surjective linear map:

$$
\psi: W /\langle\Gamma\rangle \rightarrow \mathbb{R}
$$

The composition:

$$
\phi: W \rightarrow W /\langle\Gamma\rangle \xrightarrow{\psi} \mathbb{R}
$$

is again surjective hence defines nonzero element in W^{\vee} such theta $\phi(\Gamma)=0$. Hence by Claim 3^{*} there exists $\gamma=L(u) \in \Gamma$ such hat $\phi(\gamma) \neq 0$ which is a contradiction. Thus Claim 3 holds in this case.

Proof of Claim 3*. For any $0 \neq \phi \in W^{\vee}$ there are $c_{1}, \ldots c_{r} \in \mathbb{R}$ where $r=r_{1}+r_{2}-1$ and $\left(c_{1}, \ldots c_{r}\right) \neq 0$ such that:

$$
\phi(y)=c_{1} y_{1}+\cdots+c_{r} y_{r} \quad \text { for all } y \in W
$$

Since we had:

$$
\sum_{i=1}^{r_{1}} y_{i}+2 \sum_{i=r_{1}+1}^{r_{1}+r_{2}} y_{i}=0
$$

Now fix $\alpha \in \mathbb{R}$ with $\alpha>2^{n} \operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right) / 2^{r_{1}} \pi^{r_{2}}$. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}_{>0}^{r}\right)$ define $\lambda_{r_{1}+r_{2}}=$ $\lambda_{r+1}>0$ by the formula:

$$
\prod_{i=1}^{r_{1}} \lambda_{i} \prod_{j=r_{1}+1}^{r_{1}+r_{2}} \lambda_{j}^{2}=\alpha
$$

IN $\mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ consider the set:

$$
B_{\lambda}=\left\{\left(y_{1}, \ldots, y_{r_{1}}, z_{1}, \ldots, z_{r_{2}}| | y_{i}\left|\leq \lambda_{i},\left|z_{j}\right| \leq \lambda_{r_{1}+j}\right)\right\}\right.
$$

which is a product of intervals and discs, compact, convex and centrally symmetric. Now e have that:

$$
\operatorname{vol}\left(B_{\lambda}\right)=\prod_{i=1}^{r_{1}} 2 \lambda_{i} \prod_{i=r_{1}+1}^{r_{1}+r_{2}} \pi \lambda_{i}^{2}=2^{r_{1}} \pi^{r_{2}} \alpha>2^{n} \operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)
$$

Then by Minkowski's theorem we get that there exists some $0 \neq x_{\lambda} \in \mathcal{O}_{K}$ with $\sigma\left(x_{\lambda}\right) \in B_{\lambda}$ i.e. :

$$
\left|\sigma_{i}\left(x_{\lambda}\right)\right| \leq \lambda_{i} \quad \text { for } 1 \leq i \leq n
$$

where $\lambda_{j+r_{2}}:=\lambda_{j}$ for $j=r_{1}+1, \ldots, r_{1}+r_{2}$. Since $0 \neq x_{\lambda} \in \mathcal{O}_{K}$ we have $N_{K / \mathbb{Q}}\left(x_{\lambda}\right) \mathbb{Z} \backslash 0$ and hence:

$$
1 \leq\left|N_{K / \mathbb{Q}}\left(x_{\lambda}\right)\right|=\prod_{i=1}^{n}\left|\sigma_{i}\left(x_{\lambda}\right)\right| \leq \prod_{i=1}^{n} \lambda_{i}=\prod_{i 1}^{r_{1}} \lambda_{i} \prod_{j=r_{1}+1}^{r_{1}+r_{2}} \lambda_{j}^{2}=\alpha
$$

And thus:

$$
\left|\sigma_{i}\right|\left(x_{\lambda}\right)=\left|N_{K / Q}\left(x_{\lambda}\right)\right| \prod_{j \neq i}\left|\sigma_{j}\left(x_{\lambda}\right)\right|^{-1} \geq \prod_{j \neq i} \lambda_{j}^{-1}=\frac{\lambda_{i}}{\alpha}
$$

so we see that:

$$
\frac{\lambda_{i}}{\alpha} \leq\left|\sigma_{i}\left(x_{\lambda}\right)\right| \leq \lambda_{i}
$$

This implies the inequalities:

$$
0 \leq \log \left(\lambda_{i}\right)-\log \left(\left|\sigma_{i}\left(x_{\lambda}\right)\right|\right) \leq \log (\alpha)
$$

and hence:

$$
\begin{aligned}
& \left|\phi\left(L\left(x_{\lambda}\right)\right)-\sum_{i=1}^{r} c_{i} \log \left(\lambda_{i}\right)\right| \\
& \quad=\mid \sum_{i=1}^{r} c_{i}\left(\log \left|\sigma_{i}\left(x_{\lambda}\right)\right|-\log \left(\lambda_{i}\right) \mid\right. \\
& \quad \leq \sum_{i=1}^{r}\left|c_{i}\right| \log (\alpha)<\beta
\end{aligned}
$$

For some $\beta>0$ which is independent of $\lambda \in \mathbb{R}_{>0}^{r}$ For every $\nu \in \mathbb{Z}_{\geq 1}$ choose real numbers:

$$
\lambda_{1}^{(\nu)}, \ldots \lambda_{r}^{(\nu)}>0
$$

such that:

$$
\sum_{i=1}^{r} c_{i} \log \left(\lambda_{i}^{(\nu)}\right)=2 \nu \beta
$$

and set $\lambda^{(\nu)}=\left(\lambda_{1}^{(\nu)}, \ldots, \lambda_{r}^{(\nu)}\right) i n \mathbb{R}_{>0}^{r}$ and let $x^{(\nu)} \in \mathcal{O}_{K} \backslash\{0\}$ as above. Then:

$$
\left|\phi\left(L\left(x^{(\nu)}\right)-2 \nu \beta\right)\right|<\beta
$$

and hence:

$$
(2 \nu-1) \beta<\phi\left(L\left(x^{(\nu)}\right)\right)<(2 \nu+1) \beta
$$

In particular, for all $\nu \geq 1$ the numbers $\phi\left(L\left(x^{(\nu)}\right)\right)$ are pairwise different. The estimate:

$$
N\left(x^{(\nu)}\right)=\left|N_{K / \mathbb{Q}}\left(x^{(\nu)}\right)\right| \leq \alpha
$$

shows that there are only finitely many ideals of the form $\left(x^{(\nu)}\right)$. (In the proof of the finiteness of the class number we showed that there are only finitely many ideals $\alpha \in \mathcal{O}_{K}$ with $N(\mathfrak{a}) \leq C$ for any constant C). Hence there exists $1 \leq \nu<\mu$ such that:

$$
\left(x^{(\nu)}\right)=\left(x^{(\mu)}\right)
$$

and therefore there is a unit $u \in \mathcal{O}_{K}^{\times}$with $x^{* \mu}=u x^{(\nu)}$. Finally we find that:

$$
\phi(L(u))=\phi\left(L\left(x^{(\mu)}\right)\right)-\phi\left(L\left(x^{(\nu)}\right)\right) \neq 0
$$

proving Claim 3*
And hence the theorem is proven.

4 Decomposition Laws

Consider the following situation:

Where A is a Dedekind Domain with quotient field $K, L / K$ a finite field extension and B the integral closure of A in L.

Proposition 4.1. In this situation B is a Dedekind domain which is finitely generated as an A-module

Proof. Omitted, since in our application we have that $\mathcal{O}_{K}=A, B=\mathcal{O}_{L}$ and the assertions are known

For a prime ideal $\mathfrak{Q} \neq 0$ in A consider the ideal $\mathfrak{Q} B$. Since B is a Dedekind domain we have that:

$$
\mathfrak{Q} B=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}}
$$

for pairwise different prime ideals $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{\mathfrak{r}}$ in B and $e_{i} \geq 1$. We want to study this decomposition.
Corollary 4.2. For a Noetherian integral domain A every localization $S^{-1} A$ is Noetherian.
Proposition 4.3. R an integral domain, $A \subseteq R$ a subring. Let B be the integral closure of A in R and $S \subseteq A$ a multiplicative subset. Then $S^{-1} B$ is the integral closure of $S^{-1} A$ in $S^{-1} R$.

Proof. For $x \in S^{-1} B$ write $x=\frac{b}{s}$ with $b \in B$ and $s \in S$. We can find $a_{i} \in A$ such that:

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0
$$

dividing by s^{n} gives:

$$
(b / s)^{n}+a_{n-1} / s(b / s)^{n-1}+\cdots+a_{0} / s=0
$$

and hence $x=b / s$ is integral over $S^{-1} A$
Conversely if $y=r / s \in S^{-1} R$ with $y \in R, s \in S$ is integral over $S^{-1} A$, we have:

$$
(r / s)^{n}+a_{n-1} / s_{n-1}(r / s)^{n-1}+\cdots+a_{0} / s_{0}=0
$$

for some $a_{i} \in A$ and $s_{i} \in S$. Multiplying with $\left(s s_{0} \cdots s_{n-1}\right)^{n}$ shows that $r s_{0} \cdots s_{n-1}$ is integral over A, and hence it is in B. Thus:

$$
y=\frac{r}{s}=\frac{r s_{0} \cdots s_{n-1}}{s s_{0} \cdots s_{n-1}} \in S^{-1} B
$$

Taking $R=K=\operatorname{Quot}(A)$ we get:
Corollary 4.4. If A is integrally closed then every localization $S^{-1} A$ is also integrally closed.
Putting everything together we get:
Corollary 4.5. If A is a Dedekind ring then every localization $S^{-1} A$ is also a Dedekind ring.
The following result sometimes allows us to reduce questions about Dedekind rings to questions about principal ideal domains.

Corollary 4.6. Let A be a Dedekind Ring, $\mathfrak{P} \neq 0$ a prime and $S=A \backslash \mathfrak{P}$. The localization $A_{\mathfrak{F}}:=$ $S^{-1} A$ is a PID which has only one non-zero prime ideal given by $\mathfrak{m}=\mathfrak{p} A_{\mathfrak{p}}$. Any element $\pi \in A_{\mathfrak{F}}$ which $\mathfrak{m}=(\pi)$ is a prime element. The nonzero ideals \mathfrak{a} of $A_{\mathfrak{F}}$ have the form $\mathfrak{a}=\mathfrak{P}^{m}=\left(\pi^{m}\right)$ for some uniquely determined $n \geq 0$.

The next proposition concerns the behavior of localization with respect to quotients (They commute).
we now return to the situation A, B, K, L above.
For a prime ideal \mathfrak{p} in A consider the prime decomposition:

$$
\text { (*) } \mathfrak{p} B=\prod_{i=1}^{r} \mathfrak{P}_{i}^{e_{i}}
$$

Fact: The \mathfrak{P}_{i} 's are exactly the prime ideals in B "lying above" \mathfrak{p} i.e. with $\mathfrak{P}_{i} \cap A=\mathfrak{p}$
Proof. Indeed if $\mathfrak{P} \subseteq \mathfrak{p} B$ then $\mathfrak{p} \subseteq \mathfrak{p} B \cap A \subseteq \mathfrak{P} \cap A$. Then since $\mathfrak{P} \cap A \neq A$ and \mathfrak{p} is maximal we have $\mathfrak{p}=\mathfrak{P} \cap A$. Conversely if $\mathfrak{P} \cap A=\mathfrak{p}$ then $\mathfrak{p} \subseteq \mathfrak{P}$ hence $\mathfrak{p} B \subseteq \mathfrak{P}$ and the claim follows.

Convention: One usually writes $\mathfrak{P} \mid \mathfrak{p}$ in this case.
We now introduce an important invariant for non-zero prime ideals $\mathfrak{P} \mid \mathfrak{p}$:
The inclusion $A \rightarrow B$ induces a field extension:

$$
A / \mathfrak{p} \rightarrow B / \mathfrak{P}
$$

and a map:

$$
A / \mathfrak{p} \rightarrow B / \mathfrak{p} B
$$

Since B is a finitely generated A-module B / \mathfrak{P} and $B / \mathfrak{p} B$ are finite dimensional A / \mathfrak{p}-vector spaces.
Definition 4.7. We call:

$$
f=f(\mathfrak{P} / \mathfrak{p}):=\operatorname{dim}_{A / \mathfrak{p}} B / \mathfrak{P}
$$

the inertia degree of \mathfrak{P} over \mathfrak{p}. In the decomposition $(*)$ we set $f_{i}=f\left(\mathfrak{P}_{i} / \mathfrak{p}\right)$. The exponent $e_{i}=e\left(\mathfrak{P}_{\mathfrak{i}} / \mathfrak{p}\right)$ is called the ramification index of $\mathfrak{P}_{i} / \mathfrak{p}$.

Theorem 4.8. (Degree formula) With the above notation we have:

$$
\operatorname{deg}(L / K)=\operatorname{dim}_{A / \mathfrak{p}} B / \mathfrak{p} B=\sum_{i=1}^{r} e_{i} f_{i}
$$

Proof. We begin with the second equality. Writing:

$$
\mathfrak{p} B=\mathfrak{q}_{1} \ldots \mathfrak{q}_{s}
$$

with prime ideals \mathfrak{q}_{j} of B we have to show that:

$$
\operatorname{dim}_{A / \mathfrak{p}} B / \mathfrak{p} B=\sum_{j=1}^{s}=f\left(\mathfrak{q}_{j} \mid \mathfrak{p}\right)
$$

Consider the inclusions:

$$
\mathfrak{p} B=\mathfrak{q}_{1} \cdots \mathfrak{q}_{s} \subset \cdots \subset \mathfrak{q}_{1} \mathfrak{q}_{2} \subset \mathfrak{q}_{1} \subset B
$$

give short exact sequences of A / \mathfrak{P}-vector spaces:

$$
0 \rightarrow \mathfrak{a} / \mathfrak{a q}_{j} \rightarrow B / \mathfrak{q}_{1} \cdots \mathfrak{q}_{j} \rightarrow B / \mathfrak{q}_{1} \cdots \mathfrak{q}_{j-1} \rightarrow 0
$$

where $\mathfrak{a}=\mathfrak{q}_{1} \cdots \mathfrak{q}_{j-1}$. Thus we get:

$$
\operatorname{dim}\left(B / \mathfrak{q}_{1} \cdots \mathfrak{q}_{j}\right)=\operatorname{dim}\left(B / \mathfrak{q}_{1} \cdots \mathfrak{q}_{\mathfrak{j}-\mathbf{1}}\right)+\operatorname{dim}\left(\mathfrak{a} / \mathfrak{a q}_{j}\right)
$$

As a B / \mathfrak{q}_{j}-vector space $\mathfrak{a} / \mathfrak{a} \mathfrak{q}_{j}$ is 1-dimensional (c.f. the argument that the norm is multiplicative: There are no proper ideals between $\left.\mathfrak{a} \mathfrak{q}_{j} \subset \mathfrak{a}\right)$. Hence $\mathfrak{a} / \mathfrak{a} \mathfrak{q}_{j} \cong B / \mathfrak{q}_{j}$ has dimensions $f\left(\mathfrak{q}_{j} \mid \mathfrak{p}\right)$ as an A / \mathfrak{p}-vector space. Thus:

$$
\operatorname{dim}\left(B / \mathfrak{q}_{1} \cdots \mathfrak{q}_{j}\right)=\operatorname{dim}\left(B / \mathfrak{q}_{1} \cdots \mathfrak{q}_{j-1}\right)+f\left(\mathfrak{q}_{j} \mid \mathfrak{p}\right)
$$

Hence the first claim follows inductively.
Set $n=\operatorname{deg}(L / K)$. It remains to show that :

$$
\operatorname{dim}_{A / \mathfrak{p}} B / \mathfrak{p} B=n
$$

First assume that A is a principal ideal domain. Then the finitely generated, torsion free A-module B is a free module of rank n. Let x_{1}, \ldots, x_{n} be an A-basis of B. Then $\bar{x}_{1}, \ldots, \bar{x}_{n}$ where $\bar{x}_{i}=x_{i}+\mathfrak{p} B$ is and A / \mathfrak{p}-basis of $B / \mathfrak{p} B$. Indeed: Clearly these generate $B / \mathfrak{p} B$. Moreover since A is a PID we have $\mathfrak{p}=(\pi)$ for some $\pi \in A$. Assume that:

$$
\sum_{i=1}^{n} \bar{\lambda}_{i} \bar{x}_{i}=0
$$

for certain $\bar{\lambda}_{i} \in A / \mathfrak{p}$. Thus:

$$
\sum_{i=1}^{n} \lambda_{i} x_{i}=\pi b \quad \text { for some } b \in B
$$

moreover we can write:

$$
b=\sum_{i=1}^{n} \mu_{i} x_{i} \quad \text { for } \quad \mu_{i} \in A
$$

and hence:

$$
\sum_{i=1}^{n}\left(\lambda_{i}-\pi \mu_{i}\right) x_{i}=0 \in B
$$

so since the x_{i} were a basis $\lambda_{i}-\pi \mu_{i}=0$ and thus:

$$
\bar{\lambda}_{i}=\bar{\pi} \bar{\mu}_{i}=0 \in A / \mathfrak{p}
$$

So the \bar{x}_{i} form a basis as well. Hence we've shown that:

$$
\operatorname{dim}_{A / \mathfrak{p}} B / \mathfrak{p} B=n
$$

Now let A be a general Dedekind Ring, then we reduce to the PID case by localizing: Let $S=A \backslash \mathfrak{p}$ and consider:

$$
A_{\mathfrak{p}}:=S^{-1} A \quad \text { and } \quad B_{\mathfrak{p}}:=S^{-1} B
$$

Then $A_{\mathfrak{p}}$ is a PID with quotient field K and integral closure $B_{\mathfrak{p}}$ in L. Since $\mathfrak{p} A_{\mathfrak{p}}$ is the unique non-zero prime ideal of $A_{\mathfrak{p}}$, we have seen that:

$$
\operatorname{dim}_{A_{\mathfrak{p} / \mathfrak{p}}}\left(B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}\right)=n
$$

Furthermore we know that the inclusion $A \hookrightarrow A_{\mathfrak{p}}$ induces an isomorphism:

$$
A / \mathfrak{p} \xrightarrow{\sim} A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}
$$

Hence it suffices to show that the inclusion $B \hookrightarrow B_{\mathfrak{p}}$ induces an isomorphism of A / \mathfrak{p}-vector spaces:

$$
\varphi: B / \mathfrak{p} B \xrightarrow{\sim} B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}
$$

Clear: φ is an A / \mathfrak{p}-linear map.
Injectivity: We have to show that $\mathfrak{p} B_{\mathfrak{p}} \cap B=\mathfrak{p} B$. Need to show " \subset ". Indeed for $c \in B$ with $c \in \mathfrak{p} B_{\mathfrak{p}}$
we can write $c=\frac{x}{s}$ with $x \in \mathfrak{p} B, s \in S=A \backslash \mathfrak{p}$. Since $s \in A, s \notin \mathfrak{p}$ we have $(s)+\mathfrak{p}=A$, hence there exists some $a \in A, p_{1} \in \mathfrak{p}$ with:

$$
s a+p_{1}=1
$$

and thus:

$$
\text { (*) } c=c s a+c p_{1}
$$

and so:

$$
c=\frac{x}{s} s a+c p_{1}=x a+c p_{1} \in \mathfrak{p} B
$$

Surjectivity: Consider $y=\frac{c}{s} \in B_{\mathfrak{F}}, c \in B, s \in S$. Using * we get:

$$
y=\frac{c s a}{s}+\frac{c p_{1}}{s}=c a+p_{1} \frac{c}{s} \equiv c a \quad \bmod \mathfrak{p} B_{\mathfrak{p}}
$$

Thus $y \bmod \mathfrak{p} B_{\mathfrak{p}}=\varphi(c a \bmod \mathfrak{p} B)$ is in the image of φ and hence φ is surjective.
Example 4.9. Let K / \mathbb{Q} be a quadratic extension, p a prime number then:

$$
p \mathcal{O}_{K}=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}}
$$

Since $\sum_{i=1}^{r} f_{i} e_{i}=\operatorname{deg}(K / Q)=2$ we have three possibilities:

1. $r=1, f_{1}=1, e_{1}=2$ then p is called ramified $p \mathcal{O}_{K}=\mathfrak{P}^{2}$
2. $r-1 f_{1}=2, e_{1}=2$ then p is called inert and $p \mathcal{O}_{K}=p r=2, f_{1}=f_{2}=1, e_{1}=e_{2}=1$ the p is called decomposed with:

$$
p \mathcal{O}_{K}=\mathfrak{P}_{1} \mathfrak{P}_{2}, \mathfrak{P}_{1} \neq \mathfrak{P}_{2}
$$

Example 4.10. for $N \geq$ let μ_{N} be the group of N-th roots of unity in an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}. Then μ_{N} is a finite subgroup of \bar{Q}^{\times}and hence cyclic (or order N). A generator ζ of μ_{N} is called a primitive N-th root of unity. It induces an isomorphism $\mathbb{Z} / N \xrightarrow{\sim} \mu_{N}$. The primitive roots of unity in μ_{n} correspond to $(\mathbb{Z} / N)^{\times}$. Hence there are $\phi(N):=\left|(\mathbb{Z} / N)^{\times}\right|$primitive N-th roots of unity in $\overline{\mathbb{Q}}$. Now let p be a prime number, $n \geq 1$ and consider $N=p^{n}$. In this case:

$$
e:=\phi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1)
$$

The primitive p^{n}-th roots of unity are the roots of the cyclotomic polynomial:

$$
\begin{aligned}
F(X)=\frac{X^{p^{n}}-1}{X^{p^{n-1}}-1}=X^{p^{n-1}(p-1)}+ & X^{p^{n-1}(p-2)}+\cdots+1 \\
& =\prod_{k \in\left(\mathbb{Z} / p^{n}\right)^{\times}}\left(X-\zeta^{k}\right)
\end{aligned}
$$

where ζ is a chosen p^{n}-th root of unity. We have $F(1)=p$ and hence:

$$
p=\prod_{k \in(\mathbb{Z} / p)^{\times}}\left(1-\zeta^{k}\right)=N_{\mathbb{Q}(\zeta) / \mathbb{Q}}(1-\zeta)
$$

Let B be the ring of integers of $\mathbb{Q}(\zeta)$. We have $\mu_{p^{n}} \subseteq B$ and hence $1-\zeta^{k} \in B$ for all k.
Claim: $\left(1-\zeta^{i}\right) B=\left(1-\zeta^{j}\right) B$ for all $i, j \in\left(\mathbb{Z} / p^{n}\right)^{\times}$
Indeed, let $k=i j^{-1}$ in $\left(\mathbb{Z} / p^{n}\right)^{\times}$, then:

$$
1-\zeta^{i}=1-\left(\zeta^{j}\right)^{k}=\left(1-\zeta^{j}\right)\left(1+\zeta^{j}+\cdots+\left(\zeta^{j}\right)\right)^{\tilde{k}-1}
$$

where $\tilde{k} \in \mathbb{Z}$ is a lift of k. Therefore we get:

$$
1-\zeta^{i} \in\left(1-\zeta^{j}\right) B \Longrightarrow\left(1-\zeta^{i}\right) B \subseteq\left(1-\zeta^{j}\right) B
$$

the claim follows by interchanging i and j. Hence we get:

$$
p B=(1-\zeta)^{e} B=((1-\zeta) B)^{e}
$$

consider the prime ideal decomposition:

$$
p B=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}}
$$

It follows that $e \mid e_{i}$ for all i. Hence $e=\phi\left(p^{n}\right)=\operatorname{deg}(\mathbb{Q}(\zeta) / Q)=\sum_{i=1}^{r} e_{i} f_{i} \geq r e$ It follows that $\mathfrak{P}=(1-\zeta) B$ is a prime ideal of B of inertia degree 1 and the decomposition of $p B$ in B is:

$$
B p=\mathfrak{P}^{e}=(1-\zeta)^{e}, e=\phi\left(p^{n}\right)
$$

(p is totally ramified in $\mathbb{Q}\left(\zeta_{p^{n}}\right)$)
Remark 4.11. We will see later that $B=\mathbb{Z}\left[\zeta_{p^{n}}\right]$
We now give an explicit method to determine the prime ideal decomposition explicitly in our usual K, L, A, B situation \mathfrak{p} a prime ideal in A where L / K is separable and $L=K[\theta]$ with $\theta \in B$. Let $P(X)$ be the minimal polynomial of θ over K. We know that:

$$
P(X) \in A[X]
$$

The method will apply to all prime ideals \mathfrak{p} of A which are prime to the so called conductor f of the subring $A[\theta]$ in B. The conductor is by definition the biggest ideal of B which is contained in $A[\theta]$. Explicitly:

$$
f=\{\alpha \in B \mid \alpha B \subseteq A[\theta]\}
$$

Here's the method:
Theorem 4.12. Let $\mathfrak{p} \neq 0$ be a nonzero prime ideal of A with $\mathfrak{p} \nmid f \cap A$. Let:

$$
\bar{P}(X)=\bar{P}_{1}(X)^{e_{1}} \cdots \bar{P}_{r}(X)^{e_{r}}
$$

be the decomposition of:

$$
\bar{P}(x):=P(X) \quad \bmod \mathfrak{p} \in A / \mathfrak{p}[X]
$$

into a product of monic irreducible factors which are pairwise different. Choose monic polynomials $P_{i}(X) \in A[X]$ with:

$$
\bar{P}_{i}(X)=P_{i}(X) \quad \bmod \mathfrak{p}
$$

Then $\mathfrak{P}_{i}=\mathfrak{p} B+P_{i}(\theta) B \quad$ for $1 \leq i \leq r$ are the r pairwise different prime ideals in B lying over \mathfrak{p}. Moreover we have:

$$
f_{i}=f\left(\mathfrak{P}_{i} \mid \mathfrak{p}\right)=\operatorname{deg} \bar{P}_{i}(X)
$$

and:

$$
\mathfrak{p} B=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}}
$$

Without knowing B explicitly it is difficult to determine f. However we have the following information:

Lemma 4.13. In the situation of the theorem let $d_{\theta}=d\left(1, \theta, \ldots, \theta^{n-1}\right) \in A$ beg the discriminant of the basis $1, \theta, \ldots, \theta^{n-1}$ of $L=K(\theta)$, then $f \mid d_{\theta} B$. In particular, for all prime ideals \mathfrak{p} of A with $\mathfrak{p} \nmid\left(d_{\theta}\right)$ we have $\mathfrak{p} \nmid f \cap A$

Proof. We have already shown that we have an inclusion:

$$
d_{\theta} B \subseteq A+\theta A+\cdots+\theta^{n-1} A=A[\theta]
$$

Hence $d_{\theta} \in f$ i.e. $f \mid d_{\theta} B$. we have inclusions:

$$
\left(d_{\theta}\right)=d_{\theta} A \subseteq d_{\theta} B \cap A \subseteq f \cap A
$$

Thus if $\mathfrak{p} \nmid\left(d_{\theta}\right)$ we have $\mathfrak{p} \nmid f \cap A$ as claimed.

Example 4.14. $A=\mathbb{Z}, K=\mathbb{Q}, L=\mathbb{Q}(\sqrt[3]{2}), B=\mathcal{O}_{L}$ choose $\theta=\sqrt[r]{2} \in B$. Then $P(X)=X^{3}-2$, we've seen that:

$$
d_{\theta}=-108=-2^{2} \cdot 3^{3}
$$

Hence all prime ideals $\mathfrak{p}=p \mathbb{Z}$ for $p \neq 2,3$ are prime to the conductor f of $\mathbb{Z}[\theta]$

1. For $p=7$ we have:

$$
\bar{P}(X)=X^{3}-\overline{2} \in \mathbb{F}_{7}[X]
$$

which is irreducible since there are no third roots of $2 \in \mathbb{F}_{7}$. Thus $r=1, e_{1}=1, f_{1}=$ $\operatorname{deg}(\bar{P}(X)=3)$

$$
\mathfrak{P}=7 \mathcal{O}_{L}+P(\theta) \mathcal{O}_{L}=7 \mathcal{O}_{L}
$$

so $7 \mathcal{O}_{L}$ is prime and $\mathcal{O}_{L} / \mathfrak{P}=\mathbb{F}_{7^{3}}$
2. For $p=11$ the polynomial:

$$
\bar{P}(X)=X^{3}-\overline{2} \in \mathbb{F}_{11}[X]
$$

has a root, namely $-\overline{4}$. Hence:

$$
X^{3}-\overline{2}=(X+\overline{4})\left(X^{2}+a X+b\right)
$$

One finds that $a=-\overline{4}$ and $b=\overline{5}$ hence:

$$
X^{3}-\overline{2}=(X+\overline{4})\left(X^{2}-\overline{4} X+\overline{5}\right)
$$

Where the second factor is irreducible since it has no roots in \mathbb{F}_{11} Thus $r=2$ and:

$$
11 \mathcal{O}_{L}=\mathfrak{P}_{1} \mathfrak{P}_{2}
$$

where:

$$
\begin{gathered}
\mathfrak{P}_{1}=(11, \sqrt[3]{2}+4), f_{1}=1 \\
\mathfrak{P}_{2}=(11, \sqrt[3]{4}-4 \sqrt[4]{2}+5), f_{2}=2
\end{gathered}
$$

For the proof of our theorem we need the following:
Lemma 4.15. Let $R=\prod_{i=1}^{n} R_{i}$ be a ring, then the prime ideas \mathfrak{q} of R have the form:

$$
\mathfrak{q}=R_{1} \times \cdots \times \mathfrak{q}_{i} \times \cdots \times R_{n}=\pi_{i}^{-1}\left(\mathfrak{q}_{i}\right)
$$

for some i and some prime ideal $\mathfrak{q}_{\mathfrak{i}}$ of R_{i}. Here $\pi_{i}: R \rightarrow R_{i}$ is the projection. It induces an isomorphism:

$$
R / \mathfrak{q} \xrightarrow{\sim} R_{i} / \mathfrak{q}_{i}
$$

Proof of the Theorem. Let $\mathfrak{p} \nmid f \cap A$ be a prime ideal as in the theorem.
Claim 1: The inclusion $C=A[\theta] \hookrightarrow B$ induces an isomorphism:
$(*) \quad C / \mathfrak{p} C \xrightarrow{\sim} B / \mathfrak{p} B$
Proof. If a prime ideal \mathfrak{P} of B divides $\mathfrak{p} B$ and f then:

$$
\mathfrak{p}=\mathfrak{P} \cap A \mid f \cap A
$$

which is a contradiction. Hence $\mathfrak{p} B$ and f are coprime, i.e. $\mathfrak{p} B+f=B$. By definition we have $f \subseteq C$ and therefore $\mathfrak{p} B+C=B$. Thus the canonical map $C \rightarrow B / \mathfrak{p} B$ is surjective. Its kernel is $\mathfrak{p} B \cap C$ and for injectivity of $(*)$ it remains to show that $\mathfrak{p} B \cap C=\mathfrak{p} C$. Only need to show " \subseteq ": By $\mathfrak{p} \nmid f \cap A$ we know that $\mathfrak{p}+(f \cap A)=A$ (since \mathfrak{p} is maximal). Hence $A \subseteq \mathfrak{p}+f$ and therefore:

$$
\mathfrak{p} B \cap C \subseteq(\mathfrak{p}+g)(\mathfrak{p} B \cap C) \subseteq \mathfrak{p} C+\mathfrak{p} f B \subseteq \mathfrak{p} C
$$

Where the last inclusion holds since $f B \subseteq f \subseteq C$.

The projection $A \rightarrow \bar{A}=A / \mathfrak{p}$ induces surjective ring maps:

$$
\begin{gathered}
A[X] \rightarrow \bar{A}[X]=A[X] / \mathfrak{p}(X), Q \mapsto \bar{Q} \\
A[X] / P(X) \rightarrow \bar{A}[X] /(\bar{P}(X))
\end{gathered}
$$

Claim 2: The surjective composition:

$$
C=A[\theta] \xrightarrow{\sim} A[X] / P(X) \rightarrow \bar{A}[X] / \bar{P}(X)
$$

induces an isomorphism:

$$
C / \mathfrak{p} C \xrightarrow{\sim} \bar{A}[X] / \bar{P}(X)
$$

Proof. The kernel consists of those elements $\bar{Q}(X) \operatorname{in}(\bar{P}(X))$ which is equivalent to $\bar{Q}(X)=\bar{P}(X)=$ $\bar{S}(X)$ for some $\bar{S} \in \bar{A}[X]$ i.e. $Q(X)=P(X) S(X)+T(X)$ for some $S \in A[X]$ and $T \in \mathfrak{p}(X)$ i.e. $Q(\theta)=T(\theta)$ for some $T \in \mathfrak{p}(X)$ i.e. $\quad Q(\theta) \in \mathfrak{p}(\theta)=\mathfrak{p} C$

By these two claims the following map is an isomorphism:

$$
\begin{gathered}
\bar{A}[X] / \bar{P}(X) \xrightarrow{\sim} B / \mathfrak{p} B \\
\bar{Q} \quad \bmod \bar{P}(X) \mapsto Q(\theta) \quad \bmod \mathfrak{p} B
\end{gathered}
$$

The Chinese remainder theorem gives an isomorphism:

$$
R:=\bar{A}[X] / \bar{P}(X) \xrightarrow{\sim} \prod_{i=1}^{r} \bar{A}[X] / \bar{p}_{i}(X)^{e_{i}}
$$

Now let \mathfrak{q}_{i} be a prime ideal of $R_{i}=\bar{A}[X] / \bar{P}_{i}(X)^{e_{i}}$. Its inverse image in $\bar{A}[X]$ is a prime ideal $\tilde{\mathfrak{q}}_{i}$ which contains $\left(\bar{P}_{i}(X)^{e_{i}}\right)$. It follows that in fact $\bar{P}_{i}(X) \subseteq \tilde{\mathfrak{q}}_{i}$ and hence $\tilde{\mathfrak{q}}_{\mathrm{i}}=\left(\bar{P}_{i}(X)\right)$ since $\bar{P}_{i}(X)$ is maximal in $\bar{A}[X]$. Thus R_{i} has a unique prime ideal:

$$
\mathfrak{q}_{i}=\left(\bar{P}_{i}(X) \bmod \left(\bar{P}_{i}(X)^{e_{i}}\right)\right)
$$

Its inverse image in R is the prime ideal (π_{i}) where:

$$
\pi_{i}=\bar{P}_{i}(X) \bmod (\bar{P}(X))
$$

Now using our Lemma we get the following:
(a) The prime ideals of R are the ideals $\left(\pi_{i}\right)$
(b) $R /\left(\pi_{i}\right) \xrightarrow{\sim} \bar{A}[X] / \bar{P}_{i}(X)$ and in particular:

$$
\operatorname{dim}_{\bar{A}} R /\left(\pi_{i}\right)=\operatorname{deg} \bar{P}_{i}(X)
$$

(c) $\bigcap_{i=1}^{r}\left(\pi_{i}^{e_{i}}\right)=0$

Using the above isomorphism:

$$
\begin{gathered}
R=\bar{A}[X] / \bar{P}(X) \xrightarrow{\sim} B / \mathfrak{p} B \\
\bar{Q} \bmod \bar{P}(X) \mapsto Q(\theta) \bmod \mathfrak{p} B
\end{gathered}
$$

we get:

1. The prime ideals of $\bar{B}:=B / \mathfrak{p} B$ are the principle ideals $\overline{\mathfrak{P}}_{i}=\left(\overline{P_{i}(\theta)}\right)$ where $\overline{P_{i}(\theta)}:=$ $P_{i}(\theta) \bmod \mathfrak{p} B \in \bar{B}$
2. $\operatorname{dim}_{\bar{A}} \bar{B} / \overline{\mathfrak{P}}_{i}=\operatorname{deg} \bar{P}_{i}(X)$
3. $\bigcap_{i=1}^{r} \overline{\mathfrak{P}}_{i}^{e_{i}}=0$

The inverse image of $\overline{\mathfrak{P}}_{i}$ under the projection $B \rightarrow \bar{B} / \mathfrak{p} B$ is the prime ideal:

$$
\mathfrak{P}_{i}=\mathfrak{p} B+P_{i}(\theta) B
$$

where $P_{i} \in A[X]$ is any polynomial lifting \bar{P}_{i}. The (prime) ideals of \bar{B} correspond bijectively to the (prime) ideals of B which contain $\mathfrak{p} B$ hence:

1. The \mathfrak{P}_{i} 's are exactly the pairwise different prime ideals lying over \mathfrak{p}.
2. $f_{i}=\operatorname{dim}_{A / \mathfrak{p}} B / \mathfrak{P}_{i}=\operatorname{dim}_{\bar{A}} \bar{B} / \mathfrak{P}_{i}=\operatorname{deg} \bar{P}_{i}(X)$
3. $\mathfrak{p} B=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}}$
(Still need to do some work for the last statement, I was too tired)
$\underline{\text { Special cases of the decomposition of a prime: }}$

$$
\mathfrak{p} B=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}}
$$

Let $n=\operatorname{deg}(L / K)$ then:

$$
\sum_{i=1}^{r} e_{i} f_{i}=n
$$

1. If $r=n$ i.e. $e_{i}=f_{i}=1$ for all i then \mathfrak{p} is called completely decomposed in B (L)
2. The prime ideal $\mathfrak{P}_{\mathfrak{i}}$ is called unramified if $e_{i}=1$ and if the field extension:

$$
A / \mathfrak{p} \rightarrow B / \mathfrak{P}_{i}
$$

is separable (For extensions of number fields $A=\mathcal{O}_{K}, B=\mathcal{O}_{L}$ is always satisfied since the quotients are finite.)
3. If $e_{i}>1$ then \mathfrak{P}_{i} is called ramified and if additionally $f_{i}=1$ then it is called purely ramified.
4. \mathfrak{p}_{i} is called unramified if all the \mathfrak{P}_{i} are unramified. Otherwise \mathfrak{p} is called ramified and one says that "p ramifies in B "

We have that:
Theorem 4.16. If L / K is separable then only finitely many prime ideals \mathfrak{p} of A ramify in B.
Proof. Since L / K is finite and separable we can find some $\theta \in \mathcal{O}_{L}$ such that $L=K[\theta]$. Now let $\underset{\sim}{P}(X)$ be the minimal polynomial of θ and $d_{\theta} \in A$ the discriminant of the basis $1, \theta, \ldots, \theta^{n-1}$. Let \widetilde{L} be the Galois closure of L / K. There are n pairwise different embeddings $\sigma_{i}: L \hookrightarrow \widetilde{L}$ over K and the images $\theta_{i}=\sigma_{\widetilde{B}}(\theta) \in \widetilde{L}$ are pairwise different. Let \widetilde{B} be the integral closure of A in \widetilde{L}. Then $B \subseteq \widetilde{B}$ and $\theta_{i} \in \widetilde{B}$ for all i. Hence we get a factorization:

$$
P(X)=\prod_{i=1}^{n}\left(X-\theta_{i}\right) \in \widetilde{B}[X]
$$

and moreover:

$$
d_{\theta}=\prod_{i<j}\left(\theta_{i}-\theta_{j}\right)^{2} \in A
$$

choose a prime ideal $\widetilde{\mathfrak{P}}$ of \widetilde{B} over \mathfrak{p}. then the polynomial:

$$
\bar{P}(X) \in A / \mathfrak{p}[X]
$$

decomposes into linear factors in the extension field $\widetilde{B} / \widetilde{\mathfrak{P}}$ of A / \mathfrak{p} namely:

$$
\bar{P}(X)=\prod_{i=1}^{n}\left(X-\bar{\theta}_{i}\right) \in \widetilde{B} / \tilde{\mathfrak{P}}[X]
$$

We have:

$$
\bar{d}_{\theta}=d_{\theta} \bmod \mathfrak{p}=\prod_{i<j}\left(\bar{\theta}_{i}-\bar{\theta}_{j}\right)^{2} \in A / \mathfrak{p}
$$

Claim: If $\mathfrak{p} \nmid\left(d_{\theta}\right)$ then \mathfrak{p} is unramified in B.
Indeed. Since $\mathfrak{p} \nmid\left(d_{\theta}\right)$ we know how to compute the prime ideal decomposition of $\mathfrak{p} B$. in the decomposition of $\bar{P}(X) \in A / \mathfrak{p}[X]$ into irreducible factors:

$$
\bar{P}(X)=\bar{P}_{1}(x)^{e_{1}} \cdots \bar{P}_{r}(X)^{e_{r}}
$$

all $e_{i}=1$ since $\mathfrak{p} \nmid\left(d_{\theta}\right) \Longrightarrow \bar{d}_{\theta} \neq 0 \in A / \mathfrak{p}$ and hence the $\bar{\theta}_{i} \in \widetilde{B} / \widetilde{\mathfrak{B}}$ are pairwise different. Hence $\bar{P}(X)$ decomposes into pairwise different linear factors over $\widetilde{B} / \mathfrak{p}$ and hence:

$$
\mathfrak{p} B=\mathfrak{P}_{1} \cdots \mathfrak{P}_{r}, \quad \text { i.e. } e_{i}=1
$$

Fix \mathfrak{P}_{i} over \mathfrak{p} and let $\bar{\theta}=\theta \bmod \mathfrak{P}_{i}$ in B / \mathfrak{P}_{i}. The above argument for some $\widetilde{\mathfrak{P}}$ over \mathfrak{P}_{i} shows that $\bar{\theta}$ is a zero of a polynomial over A / \mathfrak{p} which has only simple roots. Hence $\bar{\theta}$ is separable and therefore so is:

$$
\text { (*) } \quad A / \mathfrak{p}[\theta]=B / \mathfrak{P}_{i}
$$

Indeed consider the composition:

$$
A[\theta] \hookrightarrow B \rightarrow B / \mathfrak{P}_{i}
$$

since $\mathfrak{p} \nmid\left(d_{\theta}\right) \Longrightarrow \mathfrak{p} \nmid f$ and therefore $A[\theta]+\mathfrak{p} B=B$ and thus $A[\theta]+\mathfrak{P}_{i}=B$, so this map is surjective. Thus the equality $(*)$ holds and we are done.

We have the following more precises assertion:
Theorem 4.17. (a) Let \mathcal{D} be the ideal of A which is generated by the discriminants of all bases of L / K contained in B. Then a prime \mathfrak{p} of A ramified in B if and only if $\mathfrak{p} \mid \mathcal{D}$
(b) For $A=Z, K=\mathbb{Q}$ and a number field $L \mathbb{Q}$ the prime ideal $(p)=p \mathbb{Z}$ ramifies in \mathcal{O}_{L} if and only if $p \mid d_{L / \mathbb{Q}}$

Assertion (b) is a special case of (a) because \mathcal{O}_{L} is a free \mathbb{Z}-module and hence $\mathcal{D}=\left(d_{L / \mathbb{Q}}\right)$
Proof. Omitted
Corollary 4.18. Let $L \neq \mathbb{Q}$ be a number field, then there is at least one prime number p such that (p) is ramified in \mathcal{O}_{L}.

Proof. We've seen that $\left|d_{L / \mathbb{Q}}\right| \geq 2$ and hence $d_{L / \mathbb{Q}}$ has a prime divisor p. Then by our theorem p ramified in L.

5 Decomposition Laws in Quadratic Fields

K / \mathbb{Q} quadratic field there exists $d \in \mathbb{Z}, d \neq 1 d$ not divided by a square with $\mathbb{Q}(\sqrt{d})$. The discriminant is:

$$
\mathcal{D}=\left\{\begin{array}{l}
4 d, \quad d \not \equiv 1 \bmod 4 \\
d, \quad d \equiv 1 \bmod 4
\end{array}\right.
$$

Set $\theta=\frac{D+\sqrt{D}}{2}$ then we always have $\mathcal{O}_{K}=\mathbb{Z}[\theta]$. Moreover set $\theta^{\prime}=\frac{D-\sqrt{D}}{2}$ then the minimal polynomial of θ over \mathbb{Q} is given by:

$$
\begin{aligned}
P(X)=(X-\theta)\left(X-\theta^{\prime}\right) & =X^{2}-\operatorname{Tr}(\theta) X+N(\theta) \\
& =X^{2}-D X+\frac{D(D-1)}{4} \in \mathbb{Z}[X] \\
& =\left(X-\frac{D}{2}\right)^{2}-\frac{D}{4} \in \mathbb{Q}[X]
\end{aligned}
$$

Since $\mathcal{O}_{K}=\mathbb{Z}[\theta]$ the conductor of $\mathbb{Z}[\theta]$ in \mathcal{O}_{K} is trivial and we can compute the decomposition of all primes $p \in \mathbb{Z}$. There are three possibilities:

1. $p \mathcal{O}_{K}=\mathfrak{P}^{2}$ ramified
2. $p \mathcal{O}_{K}=\mathfrak{P}_{1} \mathfrak{P}_{2}$ decomposed
3. $p \mathcal{O}_{K}=\mathfrak{P}$ inert

Fix a prime $p \neq 2$, then $a \in \mathbb{Z}$ is called a quadratic residue $\bmod p$ if $p \nmid a$ and a is a square in \mathbb{Z} / p

Theorem 5.1.

(a) p is ramified in K iff $p \mid D$
(b) p is decomposed iff either $p \neq 2$ and D (equiv d) is a quadratic residue $\bmod p$ or $p=2$ and $D \equiv 1 \bmod 8($ or equiv d)
(c) p is inert in K if either $p \neq 2$ and D is a quadratic non-residue $\bmod p$ or $p=2$ and $D \equiv 5 \bmod 8$ (or equivalently d)

Proof. The assertions for d follow from those for D. We know that p is ramified if and only if $\bar{P}(X)=P(X) \bmod p \in \mathbb{F}_{p}[X]$ has multiple zeroes, i.e. since $D=\left(\theta-\theta^{\prime}\right)^{2}$ iff $\bar{D}=D \bmod p=0$ i.e. $p \mid D$. Now assume that $p \nmid D$. Then p is decomposed iff $\bar{P}(X)$ decomposes into linear factors in $\mathbb{F}_{p}[X]$ i.e. iff $\bar{P}(X)$ has a root in \mathbb{F}_{p} :
Assume $p \neq 2$, then $2 \in \mathbb{F}_{p}^{\times}$and hence:

$$
\bar{P}(X)=(\bar{X}-\bar{D} / 2)^{2}-\bar{D} / 4 \in \mathbb{F}_{p}[X]
$$

thus $\bar{P}(X)$ has a root in \mathbb{F}_{p} iff $\bar{D} / 4$ (or equivalently \bar{D}) is a square \mathbb{F}_{p}^{\times}.
Now Assume $p=2$, thus $2 \nmid D \Longrightarrow D=d \equiv 1 \bmod 4$ and hence $D \equiv 1,5 \bmod 8$. For $D \equiv 1 \bmod 8$ we have:

$$
\bar{P}(X)=X^{2}+X=X(X+1) \in \mathbb{F}_{2}[X]
$$

and hence $p=2$ is decomposed. On the other hand for $D \equiv 5 \bmod 8$ we get:

$$
\bar{P}(X)=X^{2}+X+1 \in \mathbb{F}_{2}[X]
$$

which has no roots in \mathbb{F}_{2}. Hence \bar{P} is irreducible i.e. $p=2$ is inert.

6 Quadratic reciprocity

Proposition 6.1. For a prime $p \neq 2$ the subgroup:

$$
\left(\mathbb{F}_{p}^{\times}\right)^{2}:=\left\{x^{2} \mid x \in \mathbb{F}_{p}^{\times}\right\}
$$

is a subgroup of index 2 in \mathbb{F}_{p}^{\times}. It is the kernel of the homomorphism:

$$
\left(\frac{-}{p}\right): \mathbb{F}_{p}^{\times} \rightarrow \mu_{2}, \quad x \mapsto\left(\frac{x}{p}\right):=x^{\frac{p-1}{2}}
$$

i.e. we have an exact sequence:

$$
1 \rightarrow\left(\mathbb{F}_{p}^{\times}\right)^{2} \rightarrow \mathbb{F}_{p}^{\times} \xrightarrow{\left(\frac{\bar{p}}{p}\right)} \mu_{2} \rightarrow 1
$$

Proof. Since $\mathbb{F}_{p}^{\times} \cong \mathbb{Z} /(p-1) \mathbb{Z}$ and since p is odd this follows from the exact sequence:

$$
0 \rightarrow 2 \mathbb{Z} /(p-1) \mathbb{Z} \rightarrow \mathbb{Z} /(p-1) \mathbb{Z} \xrightarrow{\frac{p-1}{2}}\left(\frac{p-1}{2}\right) \mathbb{Z} /(p-1) \mathbb{Z} \rightarrow 0
$$

Remark 6.2. 1. $\left(\frac{x}{p}\right)$ is called the Legendre symbol of x over p. we set $\left(\frac{0}{p}\right):=0$ so we have $\left(\frac{x}{p}\right)=1 \Longleftrightarrow x \in\left(\mathbb{F}_{p}^{\times}\right)^{2}$
For $a \in \mathbb{Z}$ write:

$$
\left(\frac{a}{p}\right):=\left(\frac{a \bmod p}{p}\right) \in\{ \pm 1,0\}
$$

Then $\left(\frac{a}{p}\right)=1 \Longleftrightarrow a$ is a quadratic residue $\bmod p$
2. $(\overline{\bar{p}})$ is multiplicative.
3. For $x \in \mathbb{F}_{p}^{\times}$, if $y^{2}=x$ for some $y \in \overline{\mathbb{F}}_{p}$ then:

$$
\left(\frac{x}{p}\right)=y^{p-1}
$$

since $y^{p-1}=\left(y^{2}\right)^{\frac{p-1}{2}}=x^{\frac{p-1}{2}}$
We now look at the special cases $x=1,-1,2 \in \mathbb{F}_{p}^{\times}$. the following maps are homomorphisms:

$$
\begin{aligned}
& \varepsilon:(\mathbb{Z} / 4)^{\times} \rightarrow \mathbb{Z} / 2, \quad \varepsilon(n \bmod 4)=\frac{n-1}{2} \bmod 2 \\
& \omega:(\mathbb{Z} / 8)^{\times} \rightarrow \mathbb{Z} / 2, \quad \omega(n \bmod 8)=\frac{n^{2}-1}{8} \bmod 2
\end{aligned}
$$

Proposition 6.3. For $p \neq 2$ we have:

1. $\left(\frac{1}{p}\right)=1$
2. $\left(\frac{-1}{p}\right)=(-1)^{\varepsilon(p)}$
3. $\left(\frac{2}{p}\right)=(-1)^{\omega(p)}$

Proof. (1) and (2) are clear by definition. Let ζ be a p-th primitive root of unity in $\overline{\mathbb{F}}_{p}$ i.e. $\zeta^{8}=$ $1, \zeta^{4}=-1$. Since $f(X)=X^{n}-1$ has no multiple roots in \bar{F}_{p}. For $y=\zeta+\zeta^{-1}$ we have $y^{2}=2$. Applying the Frobenius automorphism $x \mapsto x^{p}$ of $\overline{\mathbb{F}}_{p}$ we get:

$$
y^{p}=\zeta^{p}+\zeta^{-p}
$$

For $p \equiv \pm 1 \bmod 8$ we get $\zeta^{p}=\zeta^{ \pm 1}$ hence $y^{p}=y$ hence:

$$
\left(\frac{2}{p}\right)=y^{p-1}=1=(-1)^{\omega(p)}
$$

For $p \equiv \pm \bmod 8$ we get $\zeta^{p}=-\zeta^{ \pm 1}$ and hence $y^{p}=-y$ so:

$$
\left(\frac{2}{p}\right)=y^{p-1}=-1=(-1)^{\omega(p)}
$$

Remark 6.4. In other words, for $p \neq 2-1$ is a quadratic residue $\bmod p$ iff $p \equiv 1 \bmod 4$ and 2 is a quadratic residue $\bmod p$ iff $p \equiv \pm 1 \bmod 8$

Corollary 6.5. A prime number p is of the form $p=n^{2}+m^{2}$ with $n, m \in \mathbb{Z}$ iff $p \equiv 1 \bmod 4$
Proof. The following are equivalent: $p \equiv 1 \bmod 4 \Longleftrightarrow-1$ is a quadratic residue $\bmod p \Longleftrightarrow p$ is decomposed in $\mathbb{Q}(i)$. Let $p \equiv 1 \bmod 4 \Longrightarrow p$ is decomposed in $\mathbb{Q}(i)$. Thus $p \mathbb{Z}[i]=\mathfrak{p}_{1} \mathfrak{p}_{2}$ for $\mathfrak{p}_{1} \neq \mathfrak{p}_{2}$ in $\mathbb{Z}[i]$ and hence:

$$
p^{2}=N(p \mathbb{Z}[i])=N\left(\mathfrak{p}_{1}\right) N\left(\mathfrak{p}_{2}\right)
$$

hence $N\left(\mathfrak{p}_{1}\right)=N\left(\mathfrak{p}_{2}\right)$. We have $\mathfrak{p}_{1}=(n+m i)$ for some $n, m \in \mathbb{Z}$. Since $\mathbb{Z}[i]$ is euclidean and hence a PID. Thus:

$$
p=N\left(\mathfrak{p}_{1}\right)=n^{2}+m^{2}
$$

On the other hand, since $n^{2} \equiv 0,1 \bmod 4$ for all n, the equality $p=n^{2}+m^{2}$ implies that $p \equiv 0,1,2$ $\bmod 4$, and since $p \neq 2$ we get that $p \equiv 1 \bmod 4$

Theorem 6.6. (Gauss' Quadratic Reciprocity Law)
For odd primes $p \neq \ell$ we have:

$$
\left(\frac{\ell}{p}\right)=\left(\frac{p}{\ell}\right)(-1)^{\varepsilon(\ell) \varepsilon(p)}
$$

We will give a conceptual proof later using cyclotomic fields.
Remark 6.7. The theorem can be used to calculate Legendre symbols as in the following example:

$$
\left(\frac{29}{43}\right)=\left(\frac{43}{29}\right)=\left(\frac{14}{29}\right)=\left(\frac{2}{29}\right)\left(\frac{7}{29}\right)=-\left(\frac{7}{29}\right)=-\left(\frac{29}{7}\right)=-\left(\frac{1}{7}\right)=-1
$$

7 Hilbert Theory

In our usual situation we now assume that the extension L / K is Galois and discuss the consequences of the prime ideal decomposition.

Remark 7.1. we have that $\sigma(B)=B$ for $\sigma \in G$ since if $\mathfrak{P} \in A[X]$ is a monic polynomial, then:

$$
P(b)=0 \Longleftrightarrow 0=\sigma(P(b))=P(\sigma(b))
$$

For a prime ideal \mathfrak{P} of $B, \sigma(\mathfrak{P})$ is again a prime ideal of B. Let $0 \neq \mathfrak{p} \subseteq A$ be a prime ideal. In:

$$
\mathfrak{p} B=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{p}_{1}^{e_{r}}
$$

the \mathfrak{P}_{i} are those prime ideals \mathfrak{P} of B with $\mathfrak{P} \cap A=\mathfrak{p}$. Applying $\sigma \in G$ gives:

$$
\mathfrak{p}=\sigma(\mathfrak{p})=\sigma(\mathfrak{P} \cap A)=\sigma(\mathfrak{P} \cap \sigma(A))=\sigma(\mathfrak{P} \cap A)
$$

Hence:

$$
\mathfrak{P}|\mathfrak{p} B \Longleftrightarrow \sigma(\mathfrak{P})| \mathfrak{p} B
$$

and σ permutes the \mathfrak{P}_{i}. Hence the group G acts on the set $\left\{\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r}\right\}$. Claim: We have that:

$$
e(\sigma(\mathfrak{P} \mid \mathfrak{p}))=e(\mathfrak{P} \mid \mathfrak{p})
$$

for $\mathfrak{P} \mid \mathfrak{p}$ and $\sigma \in G$
Proof. This is clear if $\sigma(\mathfrak{P})=\mathfrak{P}$. Otherwise we may assume $\mathfrak{P}=\mathfrak{P}_{1}$ and $\sigma(\mathfrak{P})=\mathfrak{P}_{2}$. Then we have:

$$
\prod_{i=1}^{r} \mathfrak{P}_{i}^{e_{i}}=\mathfrak{p} B=\sigma(\mathfrak{p} B)=\prod_{i=1}^{r} \sigma\left(\mathfrak{P}_{i}^{e_{i}}\right)=\mathfrak{P}_{2}^{e_{1}} \ldots
$$

then the uniqueness of the decomposition implies that $e_{2}=e_{1}$
Theorem 7.2. Let $0 \neq \mathfrak{p}$ be a prime ideal of A. Then the $\mathfrak{P} \mid \mathfrak{p}$ are pairwise conjugate and they all have the same inertia degree f and ramification index e. Thus we have:

$$
\begin{equation*}
\mathfrak{p} B=\left(\mathfrak{P}_{1} \cdots \mathfrak{P}_{r}\right)^{e} \quad \text { and } \quad \operatorname{deg}(L / K)=e f r \tag{3}
\end{equation*}
$$

Proof. It suffices to show that for $\mathfrak{P}, \mathfrak{P}^{\prime} \mid \mathfrak{p} B$ we have $\mathfrak{P}^{\prime}=\sigma(\mathfrak{P})$ for some $\sigma \in G$. the the iso $\sigma: B \rightarrow B$ induces an A / \mathfrak{p}-linear isomorphism:

$$
\bar{\sigma}: B / \mathfrak{P} \xrightarrow{\sim} B / \sigma(\mathfrak{P})
$$

and hence $f(\mathfrak{P} \mid \mathfrak{p})=f(\sigma(\mathfrak{P}) \mid \mathfrak{p})$ as desired.
So given $\mathfrak{P} \mid \mathfrak{p}$ assume there exists $\mathfrak{P}^{\prime} \mid \mathfrak{p}$ such that $\mathfrak{P} \neq \sigma(\mathfrak{P})$ for all $\sigma \in G$. Then $\mathfrak{P}^{\prime} \nsubseteq \sigma(\mathfrak{P})$ since $\sigma(\mathfrak{P})$ is a maximal ideal. Now:

Lemma 7.3. Let R be a ring, $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ Prime ideals of R, \mathfrak{b} and ideal with $\mathfrak{b} \nsubseteq \mathfrak{p}_{i}$ for all i. Then there exists some $b \in \mathfrak{b}$ with $b \notin \mathfrak{p}_{i}$ for all i.

By the lemma, there exists an element $x \in \mathfrak{P}^{\prime}$ with $x \notin \sigma(\mathfrak{P})$ for all $\sigma \in G$. Then:

$$
N_{L / K}(x)=\prod_{\sigma \in G} \sigma(x) \in \mathfrak{P}
$$

(Indeed, since $\sigma(x)=x$ for $\sigma=\mathrm{id}$, for all $\sigma \in G$ we have $\sigma(x)$ in B)
Hence $N_{L / K}(x) \in \mathfrak{P}^{\prime} \cap A=\mathfrak{p}$. Moreover we have that $x \notin \sigma^{-1}(\mathfrak{P})$ for all $\sigma \in G$. Hence $\sigma(x) \notin \mathfrak{P}$ and thus:

$$
N_{L / K}(x) \notin \mathfrak{P} \quad \text { since } \mathfrak{P} \text { is a prime ideal }
$$

$\Longrightarrow N_{L / K}(x) \notin \mathfrak{p}$ which is a contradiction.
Let $\mathfrak{p} \neq 0$ be a prime ideal of A. By our theorem the action on the set of prime ideals in B dividing \mathfrak{p} is transitive. The stabilizer group of \mathfrak{P} denoted $G_{\mathfrak{F}}$ is called the decomposition group of \mathfrak{P}. The map:

$$
\begin{gathered}
G / G_{\mathfrak{P}} \xrightarrow{\sim}\{\mathfrak{P}|\mathfrak{P}| \mathfrak{p}\} \\
\sigma G_{\mathfrak{P}} \mapsto \sigma(\mathfrak{P})
\end{gathered}
$$

is a bijection. Hence $|G| /\left|G_{\mathfrak{P}}\right|=\left|G / G_{\mathfrak{P}}\right|=r$ and since $|G|=\operatorname{deg}(L / K)=e f r$ we see that $\left|G_{\mathfrak{P}}\right|=e f$.
Every $\sigma \in G_{\mathfrak{P}}$ induces an A / \mathfrak{p}-linear isomorphism:

$$
\bar{\sigma}: B / \mathfrak{P} \xrightarrow{\sim} B / \mathfrak{P}
$$

Let $\operatorname{Aut}_{A / \mathfrak{p}}(B / \mathfrak{P})$ be the group of a / \mathfrak{p}-linear automorphisms of the field B / \mathfrak{P}. we get a homomorphism:

$$
G_{\mathfrak{P}} \rightarrow \operatorname{Aut}_{A / \mathfrak{p}}(B / \mathfrak{P}), \sigma \mapsto \bar{\sigma}
$$

The kernel of this map is the inertia subgroup of \mathfrak{P} denoted by $I_{\mathfrak{P}}$. By definition $I_{\mathfrak{P}}$ is a normal subgroup of $G_{\mathfrak{P}}$ and we have:

$$
I_{\mathfrak{P}}=\left\{\sigma \in G_{\mathfrak{P}} \mid \sigma(x)-x \in \mathfrak{P} \text { for all } x \in B\right\}
$$

Theorem 7.4. With notations as above, assume that the residue field extension B / \mathfrak{P} is separable. Then B / \mathfrak{P} is Galois of degree f over A / \mathfrak{p}. Moreover we have that:

$$
|I|_{\mathfrak{P}}=e
$$

and there is a short exact sequence:

$$
1 \rightarrow I_{\mathfrak{P}} \rightarrow G_{\mathfrak{P}} \rightarrow \operatorname{Gal}(B / \mathfrak{P}, A / \mathfrak{p}) \rightarrow 1
$$

Proof. Let $D=L^{G_{\mathfrak{P}}}$ be the decomposition field of \mathfrak{P} over K. Let $B_{D}=B \cap D$ be the integral closure of A in D. Set $\mathfrak{P}_{D}=\mathfrak{P} \cap B_{D}$. so we have:

By our theorem $G_{\mathfrak{P}}$ acts transitively on the prime ideals in B over \mathfrak{P}_{D}. By definition of $G_{\mathfrak{P}}$ it follows that \mathfrak{P} is the only prime ideal over \mathfrak{P}_{D}. Hence for some $e^{\prime} \geq 1$ we have:

$$
\mathfrak{P}_{D}=\mathfrak{P}^{e^{\prime}}
$$

Let $f^{\prime}=f\left(\mathfrak{P} \mid \mathfrak{P}_{D}\right)$, then:

$$
e^{\prime} f^{\prime}=\operatorname{deg}(L / D)=\left|G_{\mathfrak{P}}\right|=e f
$$

The injective homomorphisms:

$$
A / \mathfrak{P} \hookrightarrow B_{D} / \mathfrak{P}_{D} \hookrightarrow B / \mathfrak{P}
$$

shows that:

$$
f^{\prime}=\operatorname{deg}\left(B / \mathfrak{P} / B_{D} / \mathfrak{P}_{D}\right) \leq \operatorname{deg}(B / \mathfrak{P} / A \mathfrak{P})=f
$$

By $\mathfrak{P}_{d} \mid \mathfrak{p}$ we have $\mathfrak{P}_{D}=\mathfrak{P}^{e^{\prime}} \mid \mathfrak{P}=\mathfrak{P}^{e}$ and hence $e^{\prime} \leq e$. Together this shows that $e=e^{\prime}$ and $f=f^{\prime}$ and hence $\mathfrak{P}_{D}=\mathfrak{P}^{e}$ moreover $A / \mathfrak{p} \xrightarrow{\sim} B_{D} / \mathfrak{P}_{D}$ Since B / \mathfrak{P} over A / \mathfrak{p} was supposed to be separable there exists a primitive element $\bar{x} \in B / \mathfrak{P}$. Let $x \in B$ be a lift of \bar{x}. Let:

$$
X^{m}+a_{m-1} X^{m-1}+\cdots+a_{0}
$$

be the minimal polynomial of x over D. Since x is integral over B_{D}, the $a_{i} \in B_{D}$. Each zero of the polynomial has the form $\sigma(x)$ of some $\sigma \in \operatorname{Gal}(L / D)=G_{\mathfrak{P}}$. Reducing $\bmod \mathfrak{P}_{D}$ we get a polynomial with coefficients in $B_{D} / \mathfrak{P}_{D}=A / \mathfrak{p}$.

$$
(* *) \quad X^{m}+\bar{a}_{m-1} X^{m-1}+\cdots+\bar{a}_{0} \in A / \text { frakp }
$$

Its roots in B / \mathfrak{P} have the form:

$$
\sigma \bar{x} x)=\bar{\sigma}(\bar{x}) \in B / \mathfrak{P}
$$

for $\sigma \in G_{\mathfrak{P}}$. Thus B / \mathfrak{P} contains all roots of $(* *)$ and the y generate B / \mathfrak{P} over A / \mathfrak{p}. Hence B / \mathfrak{P} is the decomposition field of the polynomial over A / \mathfrak{p}, and hence B / \mathfrak{P} is normal over a / \mathfrak{p} and being separable it is also Galois.
Let $\tau \in \operatorname{Gal}(B / \mathfrak{P}), A / \mathfrak{p}$, since $\tau(\bar{x})$ is a zero of $(* *)$ there exists $\sigma \in G_{\mathfrak{P}}$ such that $\bar{\sigma}(\bar{x})=\tau(\bar{x})$. Since \bar{x} is a primitive element it follows that $\bar{\sigma}=\tau$. Hence the map:

$$
G_{\mathfrak{P}} \rightarrow \operatorname{Gal}(B / \mathfrak{P}, A / \mathfrak{p}), \sigma \mapsto \bar{\sigma}
$$

is surjective and we have an exact sequence as claimed. In particular we get:

$$
\left|G_{\mathfrak{P}}\right| /\left|I_{\mathfrak{P}}\right|=|\operatorname{Gal}(B / \mathfrak{P}, A / \mathfrak{p})|=f
$$

and $\left|G_{\mathfrak{P}}\right|=e f$. Hence we get $\left|I_{\mathfrak{P}}\right|=e$ as claimed.
Remark 7.5. 1. In the Galois situation we see that \mathfrak{p} is unramified in L iff $I_{\mathfrak{P}}=1$ for some (and hence any) $\mathfrak{P} \mid \mathfrak{p}$
2. In G we have:

$$
G_{\sigma \mathfrak{P}}=\sigma G_{\mathfrak{P}} \sigma^{-1}
$$

and:

$$
I_{\sigma(\mathfrak{P})}=\sigma I_{\mathfrak{P}} \sigma^{-1}
$$

Thus the decomposition and inertia of the different prime ideals $\mathfrak{P} \mid \mathfrak{p}$ are conjugate subgroups in G.
3. for an abelian extension L / K the group $G_{\mathfrak{P}}$ and $I_{\mathfrak{P}}$ depend only on \mathfrak{p} !

Corollary 7.6. In the Galois situation let $0 \neq \mathfrak{p}$ in A be a prime ideal and \mathfrak{P} a prime ideal in B with $\mathfrak{P m i d p}$. Let $I_{\mathfrak{P}} \subseteq G_{\mathfrak{F}} \subseteq G$ be the inertia and decomposition group of \mathfrak{P} and let:

$$
T=L^{I_{\mathfrak{F}}}
$$

be the so called inertia field and:

$$
D=L^{G_{\mathfrak{P}}}
$$

be the decomposition field of \mathfrak{P}. Let $B_{T}=B \cap T$ and $B_{D}=B \cap D$ be the integral closures of A in T respectively D. Set:

$$
\mathfrak{P}_{T}=\mathfrak{P} \cap B_{T}, \mathfrak{P}_{D}=\mathfrak{P} \cap B_{D}
$$

Let $e=e(\mathfrak{P} \mid \mathfrak{p}), f=f(\mathfrak{P} \mid \mathfrak{p})$ and r be the number of primes lying over \mathfrak{p}. Then we have the following picture:

B	\mathfrak{P}	ramification index	inertia deg.	\#prime factors	rel. deg. of ext.
	1				
B_{T}	\mathfrak{P}_{T}	e	1	1	e
	$)$				
B_{D}	\mathfrak{P}_{D}	1	f	1	f
)				
A	\mathfrak{p}	1	1	r	r

Thus \mathfrak{p} decomposes in B_{D} with r different unramified prime ideals of inertia degree 1. Analogously for \mathfrak{p} in B_{T} except that now all r prime ideals dividing \mathfrak{p} have inertia degree f. Finally all ramification in the step from T to L.

Proof. We have seen:
\mathfrak{P} is the only prime ideal over \mathfrak{P}_{D} and $\mathfrak{P}_{D}=\mathfrak{P}^{e}$. ON the other hand: $\mathfrak{p}=\mathfrak{P}^{e} \ldots$ and hence $\mathfrak{p}=\mathfrak{P}_{D} \ldots$ i.e. $e\left(\mathfrak{P}_{D} \mid \mathfrak{p}\right)=1$. Furthermore we showed that $A / \mathfrak{p} \simeq B / D / \mathfrak{P}_{D}$ i.e. $f\left(\mathfrak{P}_{D} / \mathfrak{p}\right)=1$ Finally:

$$
\operatorname{deg}(D / K)=\operatorname{deg}(L / K) / \operatorname{deg}(L / D)=e f r /\left|G_{\mathfrak{P}}\right|=e f r / e f=r
$$

Hence we have established the lower row in the picture. Next we see that:

$$
(T: D)=(L: D) /(L: D)=\left|G_{\mathfrak{P}}\right| /\left|I_{\mathfrak{P}}\right|=e f / e=f
$$

and:

$$
(L: T)=\left|I_{\mathfrak{P}}\right|=e
$$

This show the rightmost column in the picture:
We have shown that:

$$
G_{\mathfrak{P}} / I_{\mathfrak{P}} \xrightarrow{\sim} \operatorname{Gal}(B / \mathfrak{P}, A / \mathfrak{p})
$$

Apply this result to L / T instead of L / K. In that extension we have that the inertia group is equal to the decomposition group, since by definition the former is the entire Galois group. Hence we have:

$$
\operatorname{Gal}\left(B / \mathfrak{P}, B_{T} / \mathfrak{P}_{T}\right)=1
$$

i.e. $f\left(\mathfrak{P} \mid \mathfrak{P}_{T}\right)=1$. There is only one prime ideal over \mathfrak{P}_{T} hence the degree formula gives:

$$
(L: T)=e\left(\mathfrak{P} \mid \mathfrak{P}_{T}\right)
$$

We saw above that $(L: T)=e$ and hence:

$$
e\left(\mathfrak{P} \mid \mathfrak{P}_{T}\right)=e
$$

Hence we've established the upper row in the picture. The formulas:

$$
e=e(\mathfrak{P} \mid \mathfrak{p})=e\left(\mathfrak{P} \mid \mathfrak{P}_{T}\right) e\left(\mathfrak{P}_{T} \mid \mathfrak{P}_{D}\right) e\left(\mathfrak{P}_{D} \mid \mathfrak{p}\right)
$$

and:

$$
f=(\mathfrak{P} \mid \mathfrak{p})=f\left(\mathfrak{P} \mid \mathfrak{P}_{T}\right) f\left(\mathfrak{P}_{T} \mid \mathfrak{P}_{D}\right) f\left(\mathfrak{P}_{D} \mid \mathfrak{p}\right)
$$

imply that:

$$
e\left(\mathfrak{P}_{t} \mid \mathfrak{P}_{D}\right)=1 \quad \text { and } \quad f\left(\mathfrak{P}_{T} \mid \mathfrak{P}_{D}\right)=f
$$

thus we have established the middle row.
We know turn our attention to the case where L / K is a Galois extension of number fields and $A=\mathcal{O}_{K}$ and so $B=\mathcal{O}_{L}$. Here all residue fields of non-zero prime ideals are finite and hence perfect. Let $\mathfrak{p} \neq 0$ be a prime ideal i \mathcal{O}_{K} which is unramified in \mathcal{O}_{L}. Let $\mathfrak{P} \mid \mathfrak{p}$ be a prime ideal in \mathcal{O}_{L} over \mathfrak{p}. Since:

$$
1=e=\left|I_{\mathfrak{P}}\right|
$$

we have an isomorphism:

$$
G_{\mathfrak{P}} \xrightarrow{\sim} \mathrm{GL}\left(\mathcal{O}_{L} / \mathfrak{P}, \mathcal{O} / \mathfrak{p}\right)
$$

We know from the Galois theory of finite fields that the group on the right is cyclic and generated by the Frobenius Fr_{q} for $q=\left|\mathcal{O}_{K} / \mathfrak{p}\right|$. Hence $G_{\mathfrak{P}}$ also cyclic of order f with a generator $\sigma=\sigma_{\mathfrak{P} \in G_{\mathfrak{F}}}$ which is uniquely determined by the condition $\bar{\sigma}=\operatorname{Fr}_{q}$ i.e. :

$$
\sigma(x) \equiv x^{q} \bmod \mathfrak{P}, \forall x \in \mathcal{O}_{L}
$$

We set:

$$
(\mathfrak{P}, L / K):=\sigma_{\mathfrak{P}}
$$

and call it the \mathfrak{P}-Frobenius. For $\tau \in G$ we have $\tau G_{\mathfrak{F}} \tau^{-1}=G_{\tau(\mathfrak{F})}$ and correspondingly:

$$
\tau \circ(\mathfrak{P}, L / K) \circ \tau^{-1}=(\tau(\mathfrak{P}), L / K)
$$

It follows that if the extension L / K is abelian the Frobenius $\left(\mathfrak{P}, L / K\right.$) depends only on $\mathfrak{p} \cap \mathcal{O}_{K}$. Think this case we denote it by $\mathfrak{p}, L / K \in G_{\mathfrak{p}}:=G_{\mathfrak{F}}$

8 Decomposition of primes in cyclotomic fields

Lemma 8.1. For a prime number p and $\nu \geq 1$ set $n=p^{\nu}$. Let ζ be a primitive p^{ν}-th root of unity. SEt $\pi=1-\zeta$. IN the ring of integers of $\mathbb{Q}(\zeta)$ the principle ideal:

$$
\mathfrak{P}=(\pi)
$$

is a prime ideal over p of inertia degree $f=f(\mathfrak{P} \mid p)=1$ We have:

$$
(p)=\mathfrak{P}^{e} \quad \text { in } \mathcal{O}_{\mathbb{Q}(\zeta)}
$$

where $e=(\mathbb{Q}(\zeta): \mathbb{Q})=\varphi\left(p^{\nu}\right)=(p-1) p^{\nu-1}$. The basis $1, \zeta, \ldots, \zeta^{e-1}$ of $\mathbb{Q}(\zeta)$ over \mathbb{Q} has discriminant:

$$
d\left(1, \zeta, \ldots, \zeta^{e-1}\right)= \pm p^{s}
$$

where $s=p^{\nu-1}(p \nu-\nu-1)$.
Proof. Did everything already.
Theorem 8.2. For $n \geq 1$ let ζ_{n} be a primitive n-th root of unity. Then we have:

$$
\mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathbb{Z}\left[\zeta_{n}\right]
$$

Moreover let $n=p_{1}^{\nu_{1}} \cdots p_{t}^{\nu_{t}}$ be the prime factor decomposition of n. Then there are $a_{i} \in \mathbb{Z}, a_{i} \geq 1$ such that:

$$
d_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}= \pm d_{\mathbb{Q}\left(\zeta_{p_{1}}^{\nu_{1}}\right) / \mathbb{Q}}^{a_{1}} \cdots d_{\mathbb{Q}\left(\zeta_{p_{t}^{\nu_{t}}}\right) \mathbb{Q}}^{a_{1}}
$$

Proof. First assume that $n=p^{\nu}, m e=\varphi\left(p^{\nu}\right)$.Let $\zeta_{p^{\nu}}$. Using that:

$$
d\left(1, \zeta, \ldots, \zeta^{e-1}\right)= \pm p^{s}
$$

and Theorem 1.11 for $B=\mathcal{O}_{\mathbb{Q}(\zeta)}$ we get:

$$
\begin{equation*}
p^{s} B \subseteq \mathbb{Z}[\zeta] \subseteq B \tag{4}
\end{equation*}
$$

For $\pi=1-\zeta$ the prime ideal $\mathfrak{P}=(\pi)$ has inertia index 1 by Lemma 7.1. Hence we have:

$$
B / \pi B=\mathbb{Z} / p \quad \text { i.e. } \quad B=\mathbb{Z}+\pi B
$$

and therefore:

$$
\pi B+\mathbb{Z}[\zeta]=B
$$

We get:

$$
\pi^{2} B+\pi \mathbb{Z}[\zeta]=\pi B
$$

and together:

$$
\pi^{2} B+\mathbb{Z}[\zeta]=B
$$

Arguing inductively we find:

$$
\begin{equation*}
\pi^{k} B+\mathbb{Z}[\zeta]=B \forall k \geq 1 \tag{5}
\end{equation*}
$$

choose $k=e \cdot s$, then"

$$
\pi^{k} B=\left(\pi^{e} B\right)^{s}=(p B)^{s}=p^{s} B \subseteq^{(1)} \mathbb{Z} \zeta
$$

Using (2) we conclude $\mathbb{Z}[\zeta]=B$. For general n note the following fact from algebra:
Proposition 8.3. For pairwise prime integers $n, m \geq 1$ let ζ_{n} and ζ_{m} be primitive roots of unity. Then we have:

$$
\begin{gathered}
\mathbb{Q}\left(\zeta_{n}\right) \mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}\left(\zeta_{m m}\right) \\
\mathbb{Q}\left(\zeta_{n}\right) \cap \mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}
\end{gathered}
$$

Theorem 8.4. Let L / K and L^{\prime} / K be two Galois extensions of degrees n and n^{\prime} with $L \cap L^{\prime}=K$. Let $A \subseteq K$ be integrally closed with $\operatorname{Quot}(A)=K$ and let B and B^{\prime} be the integral closures of A in L respectively L^{\prime}. Let $w_{1}, \ldots w_{n}$ respectively $w_{1}^{\prime}, \ldots, w_{n^{\prime}}$ be the integral bases of B respectively B^{\prime} over A with discriminants d, d^{\prime}. If d, d^{\prime} are coprime in the sense that $(d)+\left(d^{\prime}\right)=A$ i.e. $x d+x^{\prime} d^{\prime}$ for suitable $x, x^{\prime} \in A$ then $w_{i} w_{j}^{\prime}$ form an integral basis of the ring of integral elements (over A) in $L L^{\prime}$ with discriminant $d^{n^{\prime}}\left(d^{\prime}\right)^{n}$

Example 8.5. The ring of integrals of $\mathbb{Q}(\sqrt{5}, \sqrt{17})$ is $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{17}}{2}\right]$.
Proof. By Galois theory the map:

$$
\begin{aligned}
\operatorname{Gal}\left(L L^{\prime} / K\right) & \xrightarrow{\sim} \operatorname{Gal}(L / K) \times \operatorname{Gal}\left(L^{\prime} / K\right) \\
\sigma & \mapsto\left(\left.\sigma\right|_{L},\left.\sigma\right|_{L^{\prime}}\right)
\end{aligned}
$$

is an isomorphism and hence:

$$
\operatorname{deg}\left(L L^{\prime} / K\right)=\operatorname{deg}(L / K) \operatorname{deg}\left(L^{\prime} / K\right)=n n^{\prime}
$$

The $n n^{\prime}$ products $w_{i} w_{j}^{\prime}$ are K-linearly independent and hence a basis of $L L^{\prime}$ over K. Assume that $\alpha \in K L^{\prime}$ is integral over A and write:

$$
\alpha=\sum_{i, j} a_{i j} w_{i} w_{j}^{\prime} \quad a_{i j} \in K
$$

$\underline{\text { Claim: }} a_{i j} \in K$

Indeed. Set $\beta_{j}=\sum_{i} a_{i j} w_{i} \in L$ and note that:

$$
\operatorname{Gal}\left(L L^{\prime} / K\right)=\left\{\sigma_{k} \sigma_{l}^{\prime}\right\}_{k, l}
$$

where:

$$
\operatorname{Gal}(L / K)=\left\{\sigma_{1}, \ldots \sigma_{n}\right\} \quad \operatorname{Gal}\left(L^{\prime} / K\right)=\left\{\sigma_{1}^{\prime}, \ldots \sigma_{n^{\prime}}^{\prime}\right\}
$$

Now let:

$$
\begin{aligned}
T & =\left(\sigma_{l}^{\prime}\left(w_{j}^{\prime}\right)\right)_{1 \leq l, j \leq n^{\prime}} \\
a & =\left(\sigma_{1}^{\prime}(\alpha), \ldots, \sigma_{n^{\prime}}^{\prime}(\alpha)\right)^{t} \\
b & =\left(\beta_{1}, \ldots, \beta_{n^{\prime}}\right)^{t}
\end{aligned}
$$

Then $\operatorname{det} T^{2}=d^{\prime}$ and $a=T(b)$. We have that:

$$
(\operatorname{det} T) b=T^{*} T b=T^{*} a
$$

where T^{*} denotes the adjunct matrix. Hence:

$$
d^{\prime} b=(\operatorname{det} T) T^{\prime} a
$$

has integral (over A) components i.e.:

$$
d^{\prime} \beta_{j}=\sum_{i}\left(d^{\prime} a_{i j}\right) w_{i} \in B
$$

hence:

$$
a_{i j}=x d a_{i j}=x^{\prime} d^{\prime} a_{i j} \in A
$$

So the $w_{i} w_{j}^{\prime}$ form an A-basis of the ring integral (over A) elements of $L L^{\prime}$. the discriminant of this basis is $\operatorname{det}\left(\left(\sigma_{k}\left(w_{i}\right)\right) \sigma_{l}^{\prime}\left(w_{j}^{\prime}\right)\right)_{(k, i),(l, j)}^{2}$ A calculation shows that this equals $d^{n^{\prime}} d^{\prime n}$. We leave it as an exercise.

Theorem 8.6. Let $n \geq 1$ For a prime number P let $f_{p} \geq 1$ be minimal with:

$$
p^{f_{p}} \equiv 1 \bmod n^{\prime}
$$

where $n^{\prime}=n / p^{\nu_{p}}$ and where $p^{\nu_{P}}$ is the highest power of p dividing n. Then:

$$
(p)=\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}\right)^{\varphi\left(p \nu_{p}\right)} \quad \text { in } \quad \mathbb{Q}\left(\zeta_{n}\right)
$$

where the prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ are pairwise different of inertia degree f_{p}. Moreover $r=\varphi\left(n^{\prime}\right) / f_{p}$
Remark 8.7. 1. The group $\left(\mathbb{Z} / n^{\prime}\right)^{\times}$has order $\varphi\left(n^{\prime}\right)_{\text {d }}$ Hence an integers $f_{p} \geq 1$ as in the theorem exists sine p is prime to n^{\prime}. Namely we have the f_{p} is the order of $\bar{p} \bmod n^{\prime}$ in $\left(\mathbb{Z} / n^{\prime}\right)^{\times}$.
2. The theorem implies that p is ramified in $\mathbb{Q}\left(\zeta_{n}\right)$ iff $p \mid n$ and $\varpi\left(p^{\nu_{p}}\right)=(p-1) p^{\nu_{p}-1} \geq 2$, i.e. if p is odd and $p \mid n$ or if $p=2$ and $4 \mid n$.
3. Assume $p \nmid n$. Then p is unramified in $\mathbb{Q}\left(\zeta_{n}\right)$ and we have:

$$
(p)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}
$$

with pairwise different prime ideal $\mathrm{s} \mathfrak{p}_{1}, \ldots \mathfrak{p}_{r}$ of inertia degree f_{p} each where $f_{p} \geq 1$ is minimal with:

$$
p^{f_{p}} \equiv 1 \bmod n
$$

We have $r=\varphi(n) / f_{p}$.
Proof. We can apply theorem 4.13 to all p since we know that $\mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathbb{Z}\left[\zeta_{n}\right]$ (conductor $f=(1)$). Let $\phi_{n}(x)$ be the minimal polynomial of ζ_{n} and $\bar{\phi}(X) \in \mathbb{F}_{p}[z]$ its reduction $\bmod p$. We have tho show that:

$$
\left.(*) \quad \phi_{n} \overline{(} X\right)=\left(\bar{P}_{1} \cdots \bar{P}_{r}\right)^{\varphi\left(p^{\nu_{p}}\right)} \in \mathbb{F}_{p}[X]
$$

where the $\bar{P}_{i}(X)$ are pairwise different monic irreducible polynomials of degree f_{p} in $\mathbb{F}_{p}[X]$. We fist reduce to the case $p \nmid n$. Let $\left\{\xi_{i}\right\}$ respectively $\left\{\eta_{j}\right\}$ be the the sets of primitive n^{\prime}-th respectively $p^{\nu_{p}}$-th roots of unity (in an extension field of \mathbb{Q}). Then $\left\{\xi_{i} \eta_{j}\right\}$ is the set of primitive $n^{\prime} p^{\nu_{p}}=n$-th roots of unity (!). WE find:

$$
\phi_{n}(X)=\Pi_{i, j}\left(X-\eta_{j} \xi_{i}\right)
$$

we have $\eta_{j} \equiv 1 \bmod \beta$ for all $\mathfrak{P} \mid p$ in $\mathbb{Q} \zeta_{n}$. Hence we get:

$$
\phi_{n}(X) \equiv\left(\prod_{i}\left(X-\xi_{i}\right)\right)^{\varphi\left(p^{\nu_{p}}\right)}=\left(\varphi_{n^{\prime}}(X)\right)^{\varphi\left(p^{\nu_{p}}\right)} \bmod \mathfrak{P}
$$

Since all coefficients line in \mathbb{Z} and $\mathfrak{P} \cap \mathbb{Z}=p \mathbb{Z}$, we get:

$$
\phi_{n}(X) \equiv \phi_{n^{\prime}}(X)^{\varphi\left(p^{\nu p}\right)} \bmod p
$$

i.e.:

$$
\left.\phi_{n} \overline{(} X\right)=\phi_{n^{\prime}}(X)^{\varphi\left(p^{\nu p}\right)} \in \mathbb{F}_{p}[X]
$$

By definition, $f_{p} \geq$ is minimal with $p^{f_{p}} \equiv 1 \bmod n^{\prime}$. Hence it is sufficient to show (*) or equivalently the theorem in the case $p \nmid n$. Then $p \nmid d_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}$ and hence p is unramified in the abelian extension $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$. LET:

$$
\left(p, \mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right.
$$

be the Frobenius for p.

Lemma 8.8. Under the isomorphism:

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \xrightarrow{\sim}(\mathbb{Z} / n)^{\times}
$$

we have:

$$
\left(p, \mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \mapsto p \bmod n
$$

The decomposition group G_{p} of (p) in $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ is cyclic of order $f(\mathfrak{P} \mid p)$ (any \mathfrak{P} over p). with generator $\left(p, \mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$. Hence:

$$
\begin{aligned}
f(\mathfrak{P} \mid p) & =\text { order of }\left(p, \mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \text { in } \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \\
& =\text { Lemma } \text { order of } p \bmod n \text { in }(\mathbb{Z} / n)^{\times} \\
& =f_{p} \text { as in the theorem }
\end{aligned}
$$

Proof of Lemma. Choose a prime ideal $\mathfrak{P} \mid p$ in $\mathbb{Q}\left(\zeta_{n}\right)$. Let $\sigma_{p} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ correspond to p $\bmod n \in(\mathbb{Z} / n)^{\times}$. For all $x_{i} \in \mathbb{Z}$ we have:

$$
\sigma_{p}\left(\sum_{i} x_{i} \zeta_{n}^{i}\right)=\sum_{i} x_{i} \zeta_{n}^{p_{i}} \equiv\left(\sum_{i} x_{i} \zeta_{n}^{i}\right)^{p} \bmod \mathfrak{P}
$$

Thus σ_{p} satisfies the defining property of the Frobenius.
Lemma 8.9. Let $p \neq 2$ be a prime number. Then $\mathbb{Q}\left(\zeta_{p}\right)$ contains exactly one quadratic number field F. We have:

$$
F=\left\{\begin{array}{l}
\mathbb{Q}(\sqrt{p}) \text { if } p \equiv 1 \bmod 4 \\
\mathbb{Q}(\sqrt{-p}) \text { if } p \equiv 3 \bmod 4
\end{array}\right.
$$

equivalently:

$$
F+\mathbb{Q}\left(\sqrt{p^{*}}\right) \quad \text { where } p^{*}=(-1)^{\frac{p-1}{2}} p
$$

Proof. Let $K=\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$ is Galois with group $(\mathbb{Z} / p)^{\times}=\mathbb{F}_{p}^{\times} \cong \mathbb{Z} /(p-1)$. Hence $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$ is cyclic of even order and therefore it contains exactly one subgroup of index 2 , namely $\left(\mathbb{F}_{p}^{\times}\right)^{2}$. Hence K contains exactly one subfield F of degree 2 over \mathbb{Q}. Let ℓ be a prime number which ramifies in F. Then ℓ ramifies in K and hence $\ell=p$. Write $F=\mathbb{Q}(\sqrt{d})$ with $d \in \mathbb{Z} \backslash 1$ squarefree. If $\not \equiv 1$ $\bmod 4$ then $d_{F / \mathbb{Q}}=4 d$ and hence 2 is ramified in F hence $p=2$ which is a contradiction. Hence $d \equiv 1 \bmod 4$ and $d_{F / \mathbb{Q}}=d$. Since d is squarefree and p is the only prime dividing d (\equiv ramified in F) we get that $d= \pm p$. Since $d \equiv 1 \bmod 4$ we find $d=p$ if $p \equiv 1 \bmod 4$ and $d=-p$ if $p \equiv 3$ $\bmod 4$.

Proof of Quadratic Reciprocity. Fix odd prime numbers $p \neq \ell$. Set $K=\mathbb{Q}\left(\zeta_{p}\right)$. Let $(\ell, K / \mathbb{Q}) \in$ $\operatorname{Gal}(K / \mathbb{Q})=\mathbb{F}_{p}^{\times}$be the Frobenius automorphism of $\ell($ note that ℓ is unramified in $K, K / \mathbb{Q}$ abelian). We know that:

$$
\begin{gathered}
\operatorname{Gal}(K / \mathbb{Q}) \xrightarrow{\sim} \mathbb{F}_{p}^{\times} \\
(\ell, K / \mathbb{Q}) \mapsto \ell \quad \bmod p
\end{gathered}
$$

This implies: [Stuff Missing] Hence we have:

$$
(\ell, F / \mathbb{Q})=\left(\frac{\ell}{p}\right)
$$

under the identification:

$$
\operatorname{Gal}(F / \mathbb{Q})=\mathbb{F}_{p}^{\times} /\left(\mathbb{F}_{p}^{\times}\right)^{2}=\mu_{2}
$$

On the other hand:

$$
\begin{aligned}
(\ell, F / \mathbb{Q})=\mathrm{id} & \Longleftrightarrow \text { decomposition group of } \ell \text { in } F \text { is trivial } \\
& \Longleftrightarrow \ell \text { is decomposed in } F=\mathbb{Q}\left(\sqrt{p^{*}}\right) \\
& \Longleftrightarrow p^{*} \text { is a quadratic residue } \bmod \ell \\
& \Longleftrightarrow\left(\frac{p^{\times}}{\ell}\right)=1
\end{aligned}
$$

Analogously:

$$
(\ell, F / \mathbb{Q}) \neq \mathrm{id} \Longleftrightarrow\left(\frac{p^{*}}{\ell}\right)=-1
$$

And hence putting these together:

$$
\left(\frac{\ell}{p}\right)(\ell, F / \mathbb{Q})=\left(\frac{p^{*}}{\ell}\right)=\left(\frac{-1}{\ell}\right)^{\frac{p-1}{2}}\left(\frac{p}{\ell}\right)=(-1)^{\frac{l-1}{2} \frac{p-1}{2}}\left(\frac{p}{\ell}\right)
$$

