
1 Motivation

Want to study K theory, K-groups are in general very hard to compute, e.g. K∗(Z) is not entirely
understood. It is computed in odd degrees and conjectured to vanish in degrees divisible by 4 (This
is equivalent to a deep conjecture from number theory)
A toopoical Motivation for K-theory comes from the so called Wall finiteness obstruction, i.e. if X
is a finite CW-complex and Y a retract is then Y also a finite CW-complex? As it turns out there
is an obstruction to this lying in the K-group of Z[π1(X)].
Similiar in the famous S-cobordism Theory there is an obstruction lying in an algebraic K-theory
group. This has been ugraded to a stable S-cobordism theorem by Waldhausen et.al. used for
studying diffeomorphism rings.
The K-groups were originally invented by Grothendieck to give a descrtiption of the Riemann Roch
theorem.

Definition 1.1.

K0(R) := { iso classes of finitely gen. projective modules over R}grp

The higher K-groups are obtained as the homotopy groups of the space obtained by group com-
pleting the category of finite projective R-modules.

This homotopical maneuver is why its so complicated to compute higher K-groups. The higher
K-groups of finite fields are very computable, but even for infite fields its complicated
Idea of trace methods:
Approximate by easier “more algebraic” invariants.

K

TC HC−

THH HH

(1)

Meta Theorem:
The map K

cyc−−→ TC called the cyclotomic trace is often (close to) an isomorphism.
There are relative K groups K∗(R, I) for I ⊆ R an ideal defined as a cofiber. Similiarly for
TC(R, I). Also have versions wi with coefficients K(R,Zp), TC(R,Zp)

Theorem 1.2. – If I ⊆ R is a nilpotent ideal then the relative trace

K∗(R, I)→ TC∗(R, I)

is an ismorphism. Conceptually the difference between K-theory and TC is nilinvariant.

– (Clause Matthew Morrow) If R is commutative and I-complete then the map K(R, I,Zp)→
TC(R, I, Zp). This can be used to compute the K-theory of p-adic rings

– If R is p-complete then
TC(R,Zp) ∼= K ét(R,Zp)

Where the right hand side is the étale sheafification of K-theory.

Let k be field and R a k-algebra, P a finitely generated right module over R.

HomR(P, P ) ∼= P ⊗R HomR(P,R)

There is no well defined trace map since the naive evaluation gives:

x⊗ rφ 7→ rφ(x)xr ⊗ φ 7→ φ(xr) = φ(x)r
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Take the abelianization R
ab

= R/[R,R], then we get a trace map:

HomR(P, P )→ R
ab

Recall that a left R-module is equivalently a right R
op

module. An R−R-bimodule is an R⊗kR
op

-
module. In this language:

R
ab ∼= R⊗R⊗kRop R

And in fact we will see that
HH(R/k) ∼= R⊗LR⊗kRop R

furthermore there exists a map called the Dennis trace

tr : K(R)→ HH(R/k)

Which refines the construction we gave earlier in the sense that on π0 its given by the actual trace

of the identity P
id−→ P we constructed above.

2 Classical Hochschild Homology

2.1 Definitions

Let k be a field and R a k-algebra.

Definition 2.1. Define HH(R/k) as the homology of the complex associated to the cyclic bar
resollution

Example: HH(k/k) = k concentrated in degree zero.
Now assume that R is commutative, the we immediately see that HHo(R/k) = R and HH1(R/k) =
R⊗kR
im(d)

∼= Ω1
R/k on the nose by the usual description as I/I2 where I is the kernel of the multiplication

map. Now want to give a discription of the higher groups:

Lemma 2.2. R commutative, then HH∗(R) has the structure of a strictly graded commutative
ring. [Strictly means that x2 = 0 if |x| is odd]

Proof. Follows from the fact that the hochschild complex HH∗(R/k) is associated to an animated
ring by definition.

Definition 2.3. Define Ω∗R/k :=
∧∗
R Ω1

R/k =
SymΩ1

R/k
[1]

x2=0 | x∈Ω1
R/k

Hence we get a map Ω∗R/k → HH∗(R/k) of graded commutative rings. [It does not take into

account the differential on the left hand side]

Theorem 2.4. If R/k has cotangent complex concentrated in degree 0 then this map is an iso.
Hence in particular for R and (ind)-smooth k algebra

Excercise: Find an explicit description of the DeRahm complex for a Polynomial ring in n
variables and show that it vanishes in degrees larger than n.
Now let k be an arbitrary commutative ring. This leads to issues since not everything is flat. For
now follow this ad-hoc approach:
R a differential graded algebra over k which is K-flat. [This is a subtle condition but in good cases
it agrees with levelwise flatness]. For such a dga define:

HH(R/k) = H(Tot Bcyc(R))

Where the cyclic bar resolution is now a bicomplex hence we take the Homology of the total
complex. If R is not K-flat we can find a K-flat replacement R[ and define:

HH(R/k) := HH(R[/k)

We will see that this is well defined upto quasi isomorphism.
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Proposition 2.5. For a dga R have that:

HH(R/k) ∼= R⊗L
R⊗LkR

op R

Proof. Replace R by a flat resolution. Consider the regular bar complex of R:

· · · → R⊗k R⊗k R→ R⊗k ' R

Note that term is a K-flat R⊗kR
op

-module. Applying −⊗R⊗kRop R yields the cyclic bar complex.
Hnece it follows from the usual description of derived tensor products that the total complex
computes both the left and the right hand side. as above.

Lemma 2.6. If R is a dga which arises from an animated k-algebra, then so does HH(R/k). In
particular HH∗(R/k) form a strictly graded-commutative k-algebra.

Proof. We can replace R by a level wise flat animated k-algebra. Then we can apply Hochschild
homology levelwise HH(Rn) gives a bisimplicial commutative k-algebra. Then the total complex
is quasi ismorphic to the the complex associated to the diagonal.

Lemma 2.7. A,B dga’s, then:

HH(A⊗Lk B/k) ' HH(A/k)⊗Lk HH(B/k)

Proof. Idea: Replace A,B by resolving with K-flat dga’s. Then HH(A/k), HH(B/k) are simplicial
dga’s so we can regard HH(A/k)⊗kHH(B/k) is a bisimplicial dga. The total complex is however
again quasi isomorphic to the total complex of the diagonal which is by definition HH(A⊗kB)

We are now ready to prove the HKR theorem for polynomial algebras.

Proof. (For polynomial rings over fields)

– R = k[x] then Ω(R/k) = k[x]⊗
∧

(dx)
Since this is concentrated in degrees 1 and 2 the theorem only asserts that the Hochschild
Homology vanishes in higher degrees. Will use:

HH(k[x]/k) = k[x]⊗Lk[x]⊗kk[x]
op k[x] ∼= k[x]⊗Lk[a,b] k[x]

Need to resolve the terms over k[a, b], can do this as:

k[a, b]
·(a−b)−−−−→ k[a, b]

Thus the Tor groups vanish in higher degrees as desired

– R = k[x1, · · · , xn] this is an n-fold tensor product of the first case. But both sides commute
with tensor products

– if R is polynomial in an arbitrary number of generators. It is then a filtered colimit of the
second case and the claim follows that both sides commute with filtered colimits. This is the
case since the DeRahm complex admits a generators + relations description and HH is built
from derived tensor products.

Homex
C (X,Y )

Proposition 2.8. Have that HH∗(Fp /Z) =
Fp[x1,x2,··· ]

xixj=(i+ji )xi+j
= Fp < x > ”Fp{1, x, x

2

2! , · · · }”
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Proof. compute Fp⊗LFp⊗LZ F
op
p
Fp. We can replace as as:

Fp ' Z[ε]/ε2, ∂ε = p . |ε| = 1

Then get that:
A ' Fp⊗LZ F

op

p ' Fp[ε]/ε2 ∂ε = 0

Consider A〈x〉 with differential ∂xi = εxi−1 , ∂x1 = ε and |xi| = 2i. This defines a flat resolution
of Fp.
Exercise : Check that this defines a dga (i.e. that d is a derivation) and that the homology is Fp
concentrated in degree zero
Hence get :

A〈x〉 ⊗A Fp = Fp〈x〉

as desired.

Remark 2.9. The Eilenberg-Zilber Theorem says precisely that the Dold Kan correspondence is
lax symmetric monoidal.

2.2 The Connes Operator on Hochschild Homology

The Connes Operator is degree 1 self map of HH which roughly corresponds to the deRahm
differential under the HKR theorem. Setup: k commutative ground ring, R a k-algebra

HH∗(R/k) = H∗(HH(R/k))

where
HH(R/k) = (· · · → R⊗Lk R

∂−→ R) ∈ D(k)

Theorem 2.10 (HKR). If LR/k has flat dimension 0, then we have an isomorphism of graded
commutative rings:

HH∗(R/k) ∼= Ω∗R/k

Where on the left hand side we really mean the Homology of the Hochschilod complex,so his iso-
morphism as a priori nothing to do with chain complex structure on the right hand side!

Definition 2.11. Let R be an associative k-algebra. We define a k-linear map:

B : HH(R/K)n → HH(R/k)n+1

ro ⊗ · · · ⊗ rn 7→
∑

σ∈Cn+1

(−1)nσ(0)(1⊗ rσ − (−1)nrσ ⊗ 1)

Where rσ = rσ(0)⊗rσ(n)
and we think of Cn+1 as being the group of cyclic permutations of {0, . . . , n}.

Proposition 2.12 (Exercise). Check that:

1. B2 = 0

2. ∂B +B∂ = 0

The Operator B equips HH(R/k) with the structure of a differential graded module over the
DGA:

A =
Z[b]

b2
, |b| = 1, ∂ = 0

= H∗(Π,Z), Π = U(1)

where the product structure on the last term is the Pontryagin product.
This implies that HH∗(R/k) is a graded module over Z[b]

b2
. In particular there is an operator:

B : HH∗(R/k)→ HH∗+1(R/k) with B2 = 0
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Note that we have not technically defined the operator B for a dga, but the exact same definition
works there as well and everything else goes through as well.

Proposition 2.13. If R is commutative, then B is a derivation, i.e. it satisfies the graded Leibniz
rule:

B(xy) = B(x)y + (−1)|x|xB(y)

Warning: This is not true on the nose on the complex HH(R/k) but only up to coherent chain
homotopy. We will prove this later in a more systematic way.

Proposition 2.14. The map
Ω∗R/k → HH∗(R/K)

sends the deRham differential d to the Connes operator B, i.e. the following square commutes:

Ω∗R/k HH∗(R/k)

Ω∗+1
R/k HH∗+1(R/k)

d B

Proof. The map Ω∗R/k → HH∗(R/k) is determined bu its effect in degees 0, 1:

deg 0: R→ HHo(R/k) = R

deg 1: Ω1
R/k → HH1(R/k) ' R⊗kM

∼
xdy 7→ [x⊗ y]

Thus in order to show the statement it is enough to check that:

R = Ω0
R/k HH0(R/k) r [r]

Ω1
R/k HH1(R/k) dr [1⊗ r − r ⊗ 1]

d B

We will abuse this result by referring to the B operator as d. To avoid confusion we try to stick
to the convention of referring to the differential on the Hochschild chain complex as ∂.

Exercise 2.15. For HH∗(Fp /Z) ' Fp〈x〉 with |x| = 2 the Connes operator acts trivially for degree
reasons.
Question: Does this mean that it is “trivial” on HH(Fp /Z)?

Consider the (derivedf) mod p reduction:

HH(Fp)//p := HH(Fp)⊗LZ Fp
' HH(Fp)⊗Z (

∧
Z

(ε), |ε| = 1, ∂ε = p)

' HH(Fp)⊗Fp
∧
Fp

(ε)

Thus on Homology we get:

H∗(HH(Fp)//p, ) ∼= HH∗(Fp)⊗Fp
∧
Fp

(ε)

∼= Fp〈x〉 ⊗Fp
∧
Fp

(ε)
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Proposition 2.16. We have that:

B(x[n]) = 0, B(ε) = x(
=⇒ B(εx[n]) = xx[n] = (n+ 1)x[n+1]

)
Proof. Note that the map HH(Fp) → HH(Fp)//p is compatible with B. Thus we get the first
claim B(x[n]) = 0 on Homology.
The way HH∗(Fp) = Fp〈x〉 is computed is by replacing Fp by

∧
Z(ε), ∂ε = p. The cyclic Bar

complex has the form:

. . .
∂−→
∧
Z

(ε)⊗
∧
Z

(ε)
∂−→
∧
Z

(ε)

Written as double complex:

. . . 0 0

. . . Z(ε⊗ ε) 0

· · · Z(ε⊗ 1)⊕ Z(1⊗ ε) Zε

· · · Z Z Z

(−p,p)

(p,p)

0

1 0

Here the class x is given by 1⊗ ε− ε⊗1. We have that B(ε) = 1⊗ ε− ε⊗1. After mod p reduction
we replace all Z by Fp then ε becomes a cycle and B([ε]) = [x]

3 Periodic and cyclic Homology

In the followingR a k-algebra, HH(R/k) the Hochschild complex andB : HH(R/k)→ HH(R/k)[−1],
another way to encode this is saying that HH(R/k) is a DG-module over DGA:

A =

(
k[b]

b2
, |b| = 1, ∂ = 0

)
Write DGModA → DGModA[ quasi-isos −1] ' ModA(Dk) meaning where using the DGAs as a
model for the categories of modules over the derived category of k.

Definition 3.1. 1. The cyclic Homology of R is

HC∗(R/k) :=
(
k ⊗LA HH(R/k)

)
= TorA∗ (k,HH(R/k))

2. The negative cyclic Homology of R is:

HC−∗ (R/k) = H∗(RHomA(k,HH(R/k))) = Ext−∗A (k,HH(R/k))

This is a module over Ext−∗A (k, k) ' k[t] with |t| = 2

3. The Periodic Homology of R is:

HP∗(R/k) = HC−∗ (R/k)[t−1] ' colim−−−→
(
HC−∗

·t−→ HC−∗
·t−→ . . .

)
Similar to our notation for Hochschild Homology if we omit the ∗ index we mean the com-

plexes/homotopy types.
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These are not the definitions one would find usually in the literature, the connection is the
following:

Proposition 3.2. For any k-algebra R we have that:

HC−(R/k) ' (HH(R)[|t|]), |t| = 2, ∂ + tB)

where ∂ = tB is defined as:

xtnp 7→ t′∂x+ (Bx)tn+1, for x ∈ HH(R/k)

and similarly:
HP (R/k) ' (HH(R)((t)), ∂ + tB)

Proof. Have to resolve k as anA-algebra by:

C = A{x0, x1, . . . }, |xk| = 2k

∂(xk) = bxk − 1

In fact C is a coalgebra with ∆(xk) =
∑

i+j=k xi ⊗ xj .

RHomA(k,HH(R/k)) = HomA(C,HH(R/k))

' (HH(R)[|t|], ∂ + tB)

The formula for HP follows by localizing at t.

Remark 3.3. – This formula works more generally for any object H ∈ DgModA to give
RHom(k,H).

– A is a Hopf algebra via:

ε :A→ k , ε(b) = 0

∆ :A→ A⊗ A , ∆(b) = 1⊗ b+ b⊗ 1

Claim: This induces a symmetric monoidal structure on the category of differential graded
A-modules such that k is the tensor unit.[How? This is confusing me] This implies that
RHom(k,−) is a lax symmetric monoidal functor and as such it is given by H 7→ (H[|t|], ∂ +
tB). So in particular if C is an algebra object in DgModA, i.e. C is a DGA and B satisfies
the Leibniz rule, then RHom(k,C) is a DGA.

Problem: Even if R is commutative, B is not on the nose a derivation on HH(R/k), but it works
up to chain homotopy. However this does not suffice to induce an algebra structure on the derived
Hom, we need it up to coherent homotopy, which does hold but we do not have the machinery to
talk about it yet. But there is a Hack: It does suffice to dedeuce that (HH(R/k)[|t|]), ∂ + B) has
a product up to chain homotopy upt o homotopy, i.e. that HC∗(R/k) and HP∗(R/k) are graded
commutative algebras.

Definition 3.4. Let R be a commutative k-algebra. The De Rham Cohomology of R relative to k
is defined as:

H∗dR(R/k) = H∗(Ω
∗
R/k, d)

Remark 3.5. H∗dR can (and should) be defined for shcemes X/k, it is often boring in the affine
case.
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Theorem 3.6 (A). Assume that Q ⊂ k and LR/k is flat of dimension 0. (e.g. R smooth). Then
there are antural isomorphisms:

HP∗(R/k) ∼= H∗dR(R/k)((r)) |t| = −2

HC−n = ZndR(R/k)⊕
∏
i≥1

Hn+2i
dR (R/k)

Where ZdR denote the cycles in the deRahm complex.

Proposition 3.7 (Exercise). Describe the map HC− → HP in this case and show, that it exhibits
HP as the localization a t. [ I am not sure i understand the grading on the first one]. The map
sends the first summand to the quotient and a sequence of element (x1, x2, . . . ) to the power series∑

i≥1 xit
i.

Remark 3.8. – this statement as written is often trivial, since both sides tend to vanish on
affine space, it is supposed to model the real statement. In fact for a scheme X/k with LX/R
flat of dimension 0 we have:

HP∗(X/k) ∼= H∗dR(X/k)((t))

– These statements are false if char k is not 0.

Consider the map

µ : R⊗(n+1)HH(R/k)n → Ωn
R/k

r0 ⊗ · · · ⊗ rn 7→
1

n!
rodr1 · · · drn

Lemma 3.9. This is a map of CDGA’s:

(HH(R/k), ∂, B)→ (Ω∗R/k, 0, d)

proof of the lemma.

µ(∂(ro ⊗ · · · ⊗ rn) = µ (r0r1 ⊗ r2 ⊗ · · · ⊗ rn − r1 ⊗ r2r3 ⊗ · · · ⊗ rn + · · · ± ror1 ⊗ r1 ⊗ · · · ⊗ rn−1))

= r0r1dr2 · · · drn − r0d(r1r2)dr3 . . . dn

= r0r1dr2 · · · drn − r0r1dr2dr3 · · · [....] = 0

Complicated to write out, all the terms cancel.

Exercise 3.10 (Exercise). Check that µ is mulitplicative with respect to the shuffle product on the
left and wedge product of forms on the right.

Corollary 3.11. If R has flat LR/k and k is rational we have:

(HH(R/k), ∂, B) ' (Ω∗R/k, 0, d)

Proof. We always have that the composition

Ω∗R/k → HH∗(R/k)
H∗(µ)−−−−→ Ω∗R/k (2)

is the identity, so the statement follows from the HKR theorem.
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For Theorem A we get:

HP∗(R/K) = H∗HH((R/k)((t)), ∂ +B)

' H∗(Ω∗R/k((t)), td)

' H∗dR(R/k)((t))

And similarly for HC∗∗ (R/k) ' H∗(Ω∗[|t|], td). This proves the theorem.
All of this crucially relies on us working in characteristic 0 as we will see.

Construction If k is arbitrary we have the Postinkov filtration

τ≥•HH(R/k)

on HH(R/k) which is compatible with all the structure and leads to a filtration on HP (R/k)
concretely given by:

τ≥•(HH(R/k)((t)), ∂ + tB)

and leadss to a multiplicative conditionally convergent spectral sequence

E2 = HH∗(R/k)((t))⇒ HP∗(R/k)

since the Hochschild complex is the associated graded of the latter filtration. The E3-page is given
by:

H∗(HH∗(R/k), B)((t))⇒ HP∗(R/k)

If R has flat cotangent complex concentrated in one degree then this is:

E3 = H∗dR(R/k)((t))⇒ HP∗(R/k)

Definition 3.12. R commutative ring, we define the divided power series algebra R〈〈x〉〉 as the
completion of R〈x〉 at the filtration given by the divided powers of x. Note that this is not the adic
fitration given by x.

Proposition 3.13. For A = Fp we hvae that :

HC−∗ (Fp /Z) ' Zp[t]〈〈x〉〉
xt− p

|x| = 2 , |t| = 2

and:

HP∗(Fp /Z) ' Zp[t
±〈〈x〉〉

xt− p
=

(
Zp〈〈y〉〉
y − p

[t±]

)
|y| = 0

Remark 3.14. – The ring:

HPo(Fp /Z) ∼= HC−o (FP /Z) ∼=
Z〈〈y〉〉
y − p

Is obtained by adjoining divided powers of p to Zp. This is a weird ring since Zp already
has divided powers of p. In fact this process gives us p-torison since y[p] − pp

p! is p! and hence
p-torsion

– In fact we have that
Zp[y]
y−p
∼= Zp〈z〉

z which is not Zp!

– In fact HP∗(Fp /Z) is 2-periodic derived deRahm cohomology of Fp relative Z.

Proof. Recall that HH∗(Fp /Z) ∼= Fp〈x〉 and the spectral sequence we gave earlier:

Fp〈x〉[t]⇒ HC−(Fp /Z)

which immediately collapses because everything is evenly graded. Thus HC−∗ (Fp /Z) has a associ-
ated graded given by Fp〈x〉[t]. Need some facts:
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– The connective cover of HC−(Fp /Z) can be represented by a simplicial commutative ring.
Thus it admits divided powers on positive degree homotopy groups (will discuss this later).
In particular every choice of x, t ∈ H−∗ (Fp /Z) gives a map:

Z〈x〉[t]→ HC−∗ (Fp /Z)

if we can find x, t such that xt = p in HC−∗ (Fp /Z) then this map induces an isomorphism on
associated gradeds of the map:

Z〈x〉
xt− p

→ HC−∗ (Fp /Z)

Back to the computation of HH(Fp /Z), there we computed:

Fp ∼=

(∧
Z

(ε), ∂ε = p

)
x = Bε , partialx = 0 , Bx = 0

From this we get that in HH(Fp /Z) x represents a cycle x ∈ HH∗(Fp /Z) and hence for :

HC−(HH(Fp /Z[|t|], ∂ + tB)

we get:
(∂ + tB)ε = p+ tx =⇒ p = tx ∈ HC−∗ (Fp /Z)

Remark 3.15. – One can also deduce this computation using that:

HH(Fp /Z, ∂, B) ' (
Z[ε]

ε2
〈x〉 , ∂ε = p , ∂x = 0 , Bε = x , Bx = 0)

– Once can construct long exact sequences:

· · · → HC∗−1(R)→ HC−∗ (R/)→ HP∗(R/k)→ . . .

This is quite useful but we do not want to talk about HC, which actually does not have a
ring structure. This sequence tells us, that we can think of it as an ideal/kernel of the map
HC− → HP

4 derived functors

Recall: For A an abelian category have the derived (∞)-category D(A) = K(A)[W ]−1 where W
was the class of quasi isos.
Now let FA→ B be an additive functor i.e. it preserves the zero object and direct sums.
Construction:

From F we get an induced functor:

Ch(A)
Ch(F )−−−−→ Ch(B)

by applying F level wise. This is well defined since by additivity F maps the zero map to the zero
map. This in fact refines to an enriched functor over Ch(Z). Hence we get a functor

K(A) = Ndg(Ch(A)
Ndg(F )
−−−−→ Ndg(Ch(B)) = K(B)
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which commutes with finite limits and colimits i.e. it is exact. This can be checked immediately from
the explicit description of pullbacks. We would like to get an induced functor D(F ) : D(A)→ D(B)
such that we get a commutative square:

K(A) K(B)

D(A) D(B)

prA

K(F )

prB

D(F )

of infinity categories. One might be inclined to use the universal property of the DK-localization
to define such a map. However we have the following:

Proposition 4.1. In this setting the following are equivalent:

1. There exists a functor D(A)→ D(B) making the square commute

2. The functor K(A)→ K(B) preserves quasi-isomorphisms

3. The functor F : A→ B is exact

Proof. Indeed: the equivalence 1 ⇐⇒ 2 is clear from the universal property and 2 ⇐⇒ 3 is
a standard fact from homological algebra (since quasi isos are detected on the level of homotopy
categories).

But of course we are interested in non-exact functor, hence we cannot hope for such a commu-
tative square as such.

Definition 4.2. The left derived functor LF of F is given by a functor LF : D(A→ D) together
with a natural transformation

η : LF ◦ pA → pB ◦K(F )

such that for any other functor H : D(A→ D(B)) such that the induced map:

MapFun(D(A),D(B))(H,LF )→ MapFun(K(A),K(B))(H ◦ pA, pB ◦K(F ))

is an equivalence.

Warning: The left derived functor might not exist in our generality (This actually happns)

Proposition 4.3. If LF exists it preserves finite limits and colimits. [Check!]

Definition 4.4. Given an (C,W ) and a functor G : C → D then the left derived functor LG is
given by:

C D

C[W−1] LG

η

such that the induced map

Map(H,LG)
η∗−→ Map(H,G)

is an equivalence for each H : C[W−1]→ D

We say that LG is the absolute left derived functor if for any

T : D→ E

the induced triangle:

C D E

C[W−1]

G T

T◦LG
T◦η

exhibits T ◦ LG as the left derived functor of T ◦G.
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Remark 4.5. We have that

Fun(C[W−1],D) ∼= FunW (C,D) ⊂ Fun(C,D)

where FunW denotes the full subcategory of functor which send weak equivalences to equivalences.
For given G ∈ Fun(C,D) we have that LG ∈ FunW (C,D) hence LG is a coreflection of G.

Theorem 4.6. For any functor G : K(A)→ D we have that:

LG(C) = lim←−
Ĉ

q.iso−−−→C

G(Ĉ)

provided that this limit exists for each C ∈ K(A) (This is again the limit over the slice K(A)�C
q.iso

)

Exercise 4.7. 1. For C = 0 we have that:

(LG)(0) = lim←−
Ĉ→C

G(Ĉ) = G()

since 0 is inital.

2. For any C assume that there is a K-projective object with a quasi iso p : Ĉ
∼−→ C then we

claim that p is inital in K(A)q.iso/C. To see that we note that for any other object C
′ ∼−→ C

we have a pullback:

MapK)A/C(Ĉ → C, Ĉ → C
′
) MapK(A)(Ĉ, C

′)

∆0 MapK(A)(Ĉ, C)p

y

Where the right vertical map is an equivalence since Ĉ was K-projective and hence since
pullbacks preserves equivalences so is the left vertical map.
So we see that:

(LG)(C) = H(Ĉ)

i.e. we can compute the left derived functor via projective resolutions.

Note: If for any object C there exists sucha K-projective resolution Ĉ then

LG(C) = G(Ĉ)

for any functor G and in particular this is compatible with postcomposition with functos T : D→ E

i.e. left derived functors exist and they are always absolute.
Example: Assume that F : A→ clB additive, A is small and B has all infinite products and they
are exact. Then we have that:

– D(B) has all limits (Check!)

– The derived functor LF : D(A)→ D(B) exists

– LF preserves finite colimits and limits.

There is a obvious dual notion of right derived functors. Then the dual of our formula (using that
K(Aop) = K(A)op) read as:

Rg(C) = colim−−−→
C
∼−→[̂C]

G(Ĉ)
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Example: We have functors:
MapK(A)(A,−) : K(A)→ S

MapK(A)(−, B)K(A)
op → S

Then the formulas for Map(A,B) show that:

MapD(A) ' RMapK(A)(A,−)

MapD(A)(−, B) ' RMapK(A)(−, B)

We now sketch the proof of the formula for the left derived functor:

Proof. Want to show that:
LG(C) ' lim←−

Ĉ
∼−→C

G(Ĉ)

if this limits exist.

1. One shows that the formula above defines a functor K(A)→ D

2. It preserves weak equivalences. To prove this one considers the pullback functor between slice
categories which turn out to have an adjoint.

3. There is a natural transformation η : LG→ G which is immediate from (1)

4. If G preserves quasi isos then η is an equivalence

5. For any H which preserves quasi isomorphisms check that the map:

Map(H,LG)
η∗−→ Map(H,G)

L−→ Map(LH,LG) ' Map(H,LG)

is the identity (+ the other composition)

Definition 4.8. Let D,D be ∞-categories with functors:

C D
L

R

Then a natural transformation ε : LR → idD is called the counit of an adjunction if for a pair of
objects c ∈ C, d ∈ D the induced map:

MapC(c,Rd)
L−→ MapD(Lc, LRd)

εd−→ MapD(Lc, d)

is an equivalence. Dually a transformation η : idC → RL is called unit of an adjunction if the
induced map:

MapD(Lc, d)
R−→ MapC(RLC,Rd)

ηptc−−→ MapC(c,Rd)

is an equivalence. In either case we say that L is left adjoint to R and write L a R

Given L,R as above and ε : LR → id, η : id → RL any pair of natural transformation we say
that the Zig Zag identities hold if the composites:

L = L ◦ id
η−→ L ◦R ◦ L ε−→ id ◦L = L

R = id ◦R η−→ R ◦ L ◦R ε−→ R ◦ id = R

are equivalent to idL respectively idR.
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Proposition 4.9. If transformations ε and η satisfy the ZigZag identities then these are unit and
counit of an adjunction. Conversely given a unit η of an adjunction then there is a unique counit
ε such that the ZigZag identities are satisfied and vice versa.

Proof. Assume that ε and η satisfy the ZigZag identities then:

MapC(c,Rd)
L−→ MapD(Lc,RLd)

ε−→ MapD(Lc, d)

MapC(Lc, d)
R−→ MapD(RLc,Rd)

η−→ MapD(c,Rd)

are inverse to each other. The second part also goes through as usual but requires some Yoneda
technology.

Proposition 4.10. If F : C→ D is an equivalence then it is left and right adjoint to its inverse.

Proof. DO THIs!

Facts:

– Given L : C→ D then thepair (R, η) is unique if it exists.

– The composite of left adjoints is again left adjoint to the composite of the the right adjoints.
Coherently one can say that for the∞-category of∞-categories and left adjoint repspectively
right adjoint functors we have:

CatL∞
∼−→ (CatR∞)

op

– Let I be a small ∞ category consider the constant functor map:

∆ : C→ Fun(I,C)

Assume that ∆ has a left adjoint L. Then for every functor FLI → C we get form the unit
of the adjunction a map:

F → ∆(LF )

such that the induced map:

MapC(LF, y)
∼−→ Map(F, δ(y)

is an equivalence. Hence by definition this means that:

LF = colim
I

F

Proposition 4.11. If C has all I-shaped colimits then ∆ admits a left adjoint.

– Assume that L : C→ D has for any d and object Rd and a map:

LRd→ d

such that:
MapC(c,Rd)

∼−→ MapD(Lc, d)

is an equivalence, then L admits a right adjoint R given pointiwise by R(d).

Exercise 4.12. – S
π0−→ Set is a left adjoint

– C/X → C is a left adjoint provided that C has products
(Check!)

Proposition 4.13. Left adjoint functors preserve colimits and right adjoint functors preserve lim-
its.
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Proof. This should follow from the fact that composition of left adjoints are left adjoints (Check!)

Definition 4.14. Given a functor P : C→ C
′

and a functor F : C→ D, then a triangle:

C D

C
′

F

RanF

P
η

Is said to exhibit RanF as the right Kan extension F along P if it is terminal in the sense given
for derived functors.

Map(H,RanF )
∼−→ Map(H ◦ P, F )

Corollary 4.15. If the right Kan extension RanF exists for everty F : C→ D then the restriction
functor :

P ∗ : Fun(C
′
,D)→ Fun(C, D)

admits a right adjoint also denoted Ran

5 Non-abelian derived functors

Previously F : A→ B additive, then we had two steps:

1. K(F ) : KA→ K(B)

2. LF = Ran(K(F ))

Assume that K(A) has enough K-projectives, then we have:

1. K(A)proj
i
↪−→ K(A)

p−→ D(A) is an equivalence and i is left adjoint to the projection p

2. for any F : K(A) → D the left derived functor LF : D(A) → D under this identification is
given by the restriction of F along i.

3. In particular LF : D(A)→ D(B) preserves connective objects i.e.:

LF (D(A))≥0) ⊆ D(B)≥0

Questions:

– How can we universally characterize p ◦K(F ) : K(A)≥0 → D(B)?

– What if F is not additive?

Exercise 5.1. Given a pointed functor F : A → B between abelian categories, if there exists a
functor K(A)≥0 → D(B) given on chain complexes representing objects by applying F levelwise,
then F must already be additive.

5.1 Yoneda Lemma

We fix three Grothendieck universes:

{small sets} ⊂ {large sets} ⊂ {very large sets}

Then we have a notion of categories and ∞-categories in all of these: A small ∞-categories is a
small simplicial set i.e. small set of objects, maps etc are small. Similarly for large and very large.
Now S is the large ∞-category of small spaces and denote Ŝ the very large ∞-category of large
spaces (S ⊂ Ŝ)
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– Now for a large ∞-category MapC(a, b) ∈ Ŝ

– Catsmall∞ the large ∞-category of small ∞-categories

– Cat∞ the very large ∞-category of large ∞-categories

– C ∈ Cat∞ =⇒ C[W−1] ∈ Cat∞

– MapDA(X,Y ) ' colim−−−→X̂→X Map(X̂, Y ) ∈ Ŝ

Definition 5.2. We say that a large∞-category C is locally small if for any pari a, b ∈ C the space:

MapC(a, b) ∈ Ŝ

is equivalent to an object in S i.e. it is essentially small. In this case the functor:

MapC(−,−) : Cop × C→ Ŝ

factors through S ⊂ Ŝ

Construction: For any large ∞-category C we have a functor:

j : C→ Fun(Cop, Ŝ) = P̂ (C)

c 7→ c = MapC(−, c)

called the Yoneda embedding. Moreover if C is locally small then this factors as:

j : C→ Fun(Cop, S) = P (S)

Theorem 5.3. Yoneda Lemma

1. The functor j is fully faithful

2. For any F : Cop → Ŝ and any x ∈ C there is a natural equivalence:

MapFun(Cop,S)(x, F ) ' F (x)

3. Every object F ∈ Fun(Cop, Ŝ) is a (large) colimit of objects of the form x for x ∈ C

Proof. ad (3): For a given F : Cop → Ŝ consider the pullback of ∞-categpries:

CF Fun(Cop, Ŝ)/F

C Fun(Cop, Ŝ)
j

Then C/F is large. Now we claim that:

F ' colim
x∈C/F

x

Now if C is small, then every functor F : C→ S is a small colimit of representables
Now let F : C→ D be a functor where C is small and D possibly large.

Proposition 5.4. In this setup assume that D admits all small colimits, then:
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1. There is an essentially unique colimit preserving functor such that we have a commutative
diagram of ∞-categories:

C D

P (D)

j

F

(This also defines a left Kan extension)

2. If D is locally small then this is left adjoint to the restricted Yoneda embedding:

D → Fun(Dop, S)
F ∗−−→ Fun(Cop, S)) = P (C)

Corollary 5.5. We have that Fun(P (C),D) ' Fun(C,D) i.e. P (C) is the universal ∞-category
obtained from C by freely adjoining small colimits.

Construction: Let K be any class of small colimit shapes e.g. all colimits, finite colimits, filtered,
geometric realizations and so on. We form PK(C) ⊂ P (C) as the smallest full subcategory which
contains representables and which is closed under K-indexed colimits.

Proposition 5.6. We have for any large ∞-category D which admits K-index colimits that re-
striction along j : C→ PK(C) is an equivalence:

FunK(PK(C),D)
j∗−→ Fun(C,D)

where the left term is the category of K-indexed colimit preserving functors and the inverse is given
by left Kan extension.

Example 5.7. For C any ∞-category we have:

Ind(C) = P filtered(C)

In particular if C is a 1-category then so is Ind(C)

Proposition 5.8. Assume that A has enough compact projective objects. Then we have an equiv-
alence:

D(A)≥0 ' K(Aproj)≥0 ' P∆
op

filt(Acp) ' FunΠ((Acp)op, S)

where the rightmost term are finite product preserving functors.

Corollary 5.9. A functor:
D(A)≥0 → E

that preserves geometric realizations and filtered colimits is uniquely determined by its restriction
to the subcategory of compact projectives Acp

Definition 5.10. Let C be an ∞-category, then x ∈ C is called compact if MapC(x,−) commutes
with geometric realizatons. Moreover if C is a 1-category it is called compact if HomC(x,−) com-
mutes with split coequalizers.

Definition 5.11. Let C be an ordinary category which admits small colimits and is generated
under small colimits by Ccp. Then the animation Ani(C) is defined as:

P∆,filt(Cop) ⊆ Fun
∏

((Ccp, S)

Example 5.12. Ani(Set) ' S
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6 HKR and the Cotangent Complex

Recall: Start with a 1-category C which is generated by compact projective objects ( where K ∈ C

was called projective if HomC(K,−) preserves filtered colimits and reflexive coequalizers. That C

is generated by these means that HomC(K,−) detects isomorphisms ) Then we get an ∞-category:

Ani(C) = FunΠ((Ccp)op, S)

This is the∞-category freely generated from Cop under filtered colimits and geometric realizations.
More precisely:

– Cop ⊆ Ani(C) full subcategory

– Ind(Ccp) ⊆ Ani(C)

– An arbitrary object X ∈ C can be represented as a geometric realization of a simplicial
diagram in Ind(Ccp)

– For X ∈ Ccp we have that:

MapAni(C)(X, colim
j∈∆op

Yj) = colim
j∈∆op

MapAni(C)(X,Yj)

D(A)≥0 ' Ani(A)
For a not necessarily additive functor F : A → B we can compose with the Yoneda embedding
B → Ani(B). This uniquely extends to a functor whihc preserves fileterd colimits and geometric
realizations:

Ani(A)→ Ani(B)

Example 6.1. Consider the functor:

ΛnR : ModR →MR

gives a derived functor:
LΛnR : D(R)≥0 → D(R)≥0

which is computed by representing objects by simplicial diagrams of projective modules and then
applying the functor levelwise

Exercise 6.2. Show that: LΛ2
Z(Z/n, y) ' Z/n[1]

We have that:

ani(cRing) = FunΠ((cRincp)op, S) ' FunΠ((Polyfg)op, S)

Ind(cRingcp) = Poly

So an object is represented by a simplicial diagram of polynomial rings and we have:

MapAni(cRing)(Z[x], colim
∆op

Yi) = colim∆opYi

Example 6.3. The functor
HH(−/Z) : Poly→ D(Z)≥0

commutes with filtered colimits and so it extends to a functor :

LHH : Ani(cRing)→ D(Z)≥0

which on R ∈ cRing agrees with HH(R/Z) (In fact it agrees for all animated rings by considering
the associated DGA).
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Construction: For C ∈ D(Z) we have a map τ≥nC → C which is an iso on Hi for ≥ n and the
object C has Hi(τ≥nC) = 0 for all i < n. In fact this defines a functor:

τ≥n : D(Z)→ D(Z)

Exercise 6.4. Construct the functor τ≥n using an adjunction.

We also have maps τ≥n+1C → τ≥nC and one sees that the cofiber of this map is equivalent to
the Eilenberg MacLane space Hn(C)[n].
For R ∈ Poly by what we’ve already shown we see that:

τ≥n+1HH(R/Z)

τ≥nHH(R/Z) Ωn
R/Z[n]

...

τ≥0HH(R/Z)

cofib

Definition 6.5. We define

FnHKRHH(−,Z) : Ani(cRing)→ D(Z)≥0

as the nonabelian derived functor of τ≥nHH(−/Z)

Then we get a cofiber sequence:

Fn+1
HKR(HH(R/Z))→ FnHKRHH(R/Q)→ LΩn

R/Z[n]

Lemma 6.6. We have that FnHKRHH(R/Z) ∈ D(Z)≥n

Proof. This follows immediately since D(Z)≥n is closed under colimits.

Lemma 6.7. If F : cRing→ab commutes with reflexive coequalizers then:

H0(LF (R)) = F (R)

Proof. Resolve R by a simplicial diagram of polynomial rings R• → R, then in fact:

R = coeq(R0→←
→R0)

Since LF (R) is the complex associated to F (R•) the homology H0(LF (R)) is precisely this co-
equalizer.

Exercise 6.8. Show that the following functors commute with reflexive coequalizers:

1. cRing→ Set, R 7→ Rn

2. cRing→ Ab, R 7→ Z[Rn]

3. Ωn
−/Z : cRing→ Ab

Theorem 6.9. HKR Version 2 If  LΩn
R/Z has homology concentrated in degree 0 for each n, then

HKR holds for R.
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Proof. The long exact sequence on homology associated to the cofiber sequence:

Fn+1
HKR → FnHKR →  LΩn

R/Z[n]

shows that:
Hn(FnHKR)

∼−→ Ωn
R/Z

is an isomorphism and furthermore in higher degrees:

Hi(F
n+1
HKR)

∼−→ Hi(F
n
HKR)

is an isomorphism for i > n. Hence we get equivalences:

Ωn
R/Z

∼−→ Hn(FnHKR)
∼−→ HnF

0
HKR = HHn(R/Z)

Proposition 6.10. We have that LΩn
R/Z agrees with the value on R of:

Ani(cRing/R)→ D(R)≥0 → D(Z)≥0

A ∈ Poly/R 7→ R⊗A Ωn
A/Z

Using this we see that:
R⊗A Ωn

A/Z
∼= ΛnR(R⊗A Ω1

A/Z)

Exercise 6.11. Show that A 7→ R ⊗A Ω1
A/k takes compact projctive objects in kAlg/R to compact

projective objects in ModR

Thus we have that:
LΩn

R/Z = LΛnR(LΩ1
R/Z)

Proposition 6.12. If LΩ1
R/Z has homology concentrated in degree 0 and Ω1

R/Z is a flat R-moudle
that LΩn

R/Z is also concentrated in degree 0

Proof. If Ω1
R/Z is finitely generated + projective then:

LΛnR(Ω1
R/Z) ' ΛnRΩ1

R/Z[0]

In general use Lazard’s theorem, i.e. every flat R-module is a filtered colimit of finitely generated
projective ones.

Theorem 6.13 (HKR Final Version). If LΩ1
R/Z has homology concentrated in degree 0 and Ω1

R/Z
is a flat R-module then:

HHn(R/Z) ' Ωn
R/Z

Remark 6.14. One can replace Z with some commutative base ring k and everything works the
same.

7 The Cotangent Complex and Obstruction Theory

We defined LΩ1
−/k by taking the non-abelian derived functor:

Ω1
−/K : kAlg→ Ab

and hence it defines a functor:
Ani(kAlg)→ D(Z)≥0

Lemma 7.1. The following agree:
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1. LΩ−/k : Ani(kAlg)→ D(Z)≥0 evaluated on R

2. L(A 7→ R⊗A Ω1
A/k) : Ani(kAlg/R → D(R))≥0 evaluated on R

id−→ R

Proof. Write R as colimi∈∆op Ai for Ai levelwise a polynomial ring. Then the second expression is
given by:

colim
i∈∆op

R⊗Ai Ω1
Ai/k

' colim
i∈∆op

(
colim
j∈∆op

Aj

)
⊗LAi ∆1

Ai/k

' colim
i∈∆op

(
colim
j∈∆op

i/

Aj

)
⊗LAi Ω1

Ai/k

' colim
(i→j)∈(∆op)∆1

Aj ⊗Ai Ω1
Ai/k

' colim
i∈∆op

Ω1
Ai/k

= LΩ1
R/k

The functor:
Ani(kAlg/R)→ D(R)≥0

Nowe also preserves finite coproducts and ,since by definition it already preserves filtered colimits
and geometric realizations, hence it preserves all colimits.

Example 7.2. For R = k[x1, . . . , xn]/(f1, . . . , fm) for a regular sequence fi then:

k[f1, . . . , fm] k[x1, . . . , xn]

k R

y

is a pushout in Ani(kAlg/R) hence the functor L(R⊗− Ω1
−/k takes this diagram to the pushout in

D(R)≥0

R{df1, . . . dfn} R{dx1, . . . , dxn}

0 LΩ1
R/k

(∂ifj)i,j

Where the horizontal map is the Jacobi Matrix. Hence we have that LΩ1
R/K has H0 given by the

cokernel of the Jacobi and H1 given by the kernel.

Definition 7.3. For a commutative k-algebra R we call LΩ1
R/k the Cotangent Complex of R and

denote it LR/k

Given a commutative k-algebra S and an S-module M we have the split square-zero extension
denoted S ⊕M . Then one can consider the lifting problem:

S ⊕M

R S
φ

Such a lift corresponds to a φ-linear derivation R→M i.e. an R-module map:

Ω1
R/k → φ∗M

where φ∗M denotes the restriction of scalars.
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Proposition 7.4. 1. There is a functor:

D(S)≥0 → Ani(kAlg)/S

P 7→ S ⊕ P for P projective

2. We have an equivalence of mapping spaces:

MapD(R)≥0
(LR/k, φ∗M) ' fibφ

(
MapAni(kAlg)(R,S ⊕M)→ MapAni(kAlg)(R,S)

)
A surjective map of commutative k-algebras R̃ → R with kernel I satisfying I2 = 0 is called a

(not necessarily split) square zero extension. ow L
R/R̃

has H0 = 0 and H1 = R⊗
R̃
I = I. We have

a tautological map of R-modules:
L
R/R̃
→ I[1]

inducing an isomorphism on H1 corresponding to a map of animated R̃-algebras:

R
δ−→ R⊕ I[1]

Proposition 7.5. The diagram:

R̃ R

R R⊕ I[1]

s

δ

y

is a pullback of animated R̃-algebras.

In summary: Square zero extensions I → R̃→ R of k-algebras correspond to maps:

LR/k → I[1]

Moreover maps S → R̃ lifting a given map S → R correspond to lifts:

R̃ R

S R R⊕ I[1]

s

δ

or equivalently a lift in the diagram:

R

S R⊕ I[1]

R

id

s
η

Where we see that the map R→ R is already determined, and hence the datum of such a diagram
is precisely the homotopy η. Thus since R

s−→ R⊕ I[1] corresponds to the map 0→ I[1] in, such a
lift is the same as a nullhomotopy of the induced map:

LS/k → I[1]

The set of homotopy classes of nullhomotopies form a torsor over Map(LS/k, I[1]) Altogether:
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– Square zero extenstions I → R̃→ R are classified by:

πoMapD(A)(LR/k, I[1])

– For S → R there is an obstruction in

π0MapD(S)(LS/k, I[1])

for the existence of lifts S → R̃

– Lifts (if they exist) are parametrized by:

π1MapD(S)(LS/k, I[1]) ' π0Map(LS/k, I)

This is the classical statement that the lifts are a torsor under the group of derivations.

Exercise 7.6. For a k-algebra S the following are equivalent:

1. For every square zero extension R̃→ R and every map S → R there is a lift S → R̃

2. H1LS/k = 0 and H0LS/k is a projective S-module.

Theorem 7.7. If R1/Fp is a perfect Fp-algebra then there exist flat Z/pn-algebras Rn, unique up
to isomorphism, with R1 ' Rn ⊗Z/pn Fp.
In particular Rn−1 ' Rn ⊗Z/pn Z/pn−1 and hence we get a diagram

· · · → Rn → · · · → R2 → R1

with limit R := lim←−nRn the unique flat, p-complete Zp-algebra with:

R1 ' R⊗Zp Fp = R/p

Proof. We can characterize Rn as a non-split square zero extension of Rn−1 by R1. Namely by
tensoring the exact sequence:

0→ Z/p→ Z/pn → Z/pn−1 → 0

over Z/pn with Rn obtaining:
0→ R1 → Rn → Rn−1 → 0

These are classified by
π0MapD(Rn−1)(LRn−1/Z, R1[1])

which need to be compatible with an element of

π0MapD(Z/pn−1)(LZ/pn−1/Z.Z/p[1])

classifying Z/pn → /Zpn−1

Lemma 7.8. Isomorphism classes of such Rn are a torsor over the group:

π0MapD(Rn−1)(LRn−1/Z/pn−1 , R1[1]) ' π0MapD(R1)(LR1/Fp , R1[1])

Lemma 7.9. If R1/Fp is perfect then LR1/Fp ' 0

Proof. The map:

φ : A→ A

x 7→ xp

induces the 0-map on Ω1
A/Fp (Exercise). By resolving R1 via polynomial rings and using the

naturality of the Frobenius we see that φ acts by 0 on LR1/Fp , but since A was perfect it also acts
by an isomorphism.

Hence there is a unique such lift and we are done.

The R form the theorem is called the (p-typical)Witt vectors of R0 written W (R0).

Example 7.10. For Fpn /Fp lifts to a flat Zp-algebra W (Fpn) with W (Fpn)/p ' Fp.
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8 Hochschild Homology of Schemes

Throughout this section X is a scheme over a ring k. We want to define HH(X/k). There are two
ways to do this:

1. Extend from the affine case

2. Generalize HH(−/k) to dg-categories over k and define:

HH(X/k) = HH(Perf(X)/k)

The “non -commutative” approach.

We will adapt the first approach.

Definition 8.1. We define:

HH(X/k) = lim
U⊆X open affine

HH(O(U)/k) ∈ D(k)

I.e. the limit over the functor:

HH(O(−)/k) : {U ⊆ X affine open }op → D(k)

Note that:

HH(Spec(R)/k) = lim
U⊆Spec(R)

HH(O(U)/k) = HH(O(Spec(R))/k) = HH(R/k)

since Spec(R) is initial in the category of affine opens.

Example 8.2. Consider the projective space P1
k, this has an open cover:

(A1
k)

+ ∪ (A1
k)
− = P1

k

with intersection:
(A1

k)
+ ∩ (A1

k)
− = Gm

Do we have some descent/Mayer-Vietoris principle?

Theorem 8.3. For any pair U, V ⊂ X open such that X = U ∩ V the square:

HH(X/k) HH(U/k)

HH(V/k) HH(U ∩ V/k)

is a pullback in the derived category D(k) i.e. Hochschild Homology satisfies Zariski descent.

Remark 8.4. We will see that HH(−/k) satisfies even fpqc descent.

Corollary 8.5. In the situation of the theorem we get a long exact sequence:

. . . HHn+1(U ∩ V )

HHn(X) HHn(U)⊕HHn(V ) HHn(U ∩ V )

HHn−1(X) . . .
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Exercise 8.6. For any commutative ring R and x ∈ R we have that:

HH(R[[x−1]/k]) ' HH(R/k)⊗R R[x−1] = HH(R/k)[x−1]

Example 8.7. We have for P!
k the pullback square:

HH(P1/k) HH(k[x]/k) x

HH(k[y]/k) HH(k[x±]/k) x

y x−1

And hence the Mayer Vietoris sequence:

0 HH1(p1/k) k[x]dx⊕ k[y]dy k[x±]dx

HH0(P1/k) k[x]⊕ k[y] k[x±]

HH−1(P1/k) 0

With the map:

k[x]⊕ k[y]→ k[x±]

(f, g) 7→ f(x) + f(x−1)

which is clearly surjective, hence HH−1(P1/k) = 0. Moreover we have the map:

k[x]dx⊕ k[y]dy → k[x±]dx

(fdx, gdy) 7→ f(x)dx+ g(x−1)d(x−1)︸ ︷︷ ︸
=− g(x

−1)dx

x2

Which has a one-dimensional cokernel and trivial kernel. Hence we have HH0(P1/k) = k ⊕ k and
HH1(P1/k) = 0

Proof of the Theorem. Have U, V ⊆ X open and want to show that we have a pullback:

limA⊆X HH(A) ' HH(X) HH(U) ' limA⊆X HH(A ∩ U)

limA⊆X HH(A ∩ V ) ' HH(V ) HH(U ∩ V ) ' limA⊆X HH(A ∩ U ∩ V )

Hence since limits commute with limits we can assume that X is affine. Moreover one can assume
that U, V are affine and standard open (not so clear). Thus we reduce to the case:

HH(R/k) HH(R[x−1]/k)

HH(R[y−1]) HH(R[x−1, y−1]/k)

25



For this we get the diagram:

HH(R/k) HH(R/k)⊗R R[x−1]

HH(R/k)⊗R R[y−1] HH(R/k)⊗R R[x−1, y−1]

To see that this is a pullback it suffices to prove that:

R R[x−1]

R[y−1] R[x−1, y−1]

is a pullback. However its clearly a pushout and hence a pullback by stability.

Recall: If R has flat cotangent complex (i.e. cotangent complex concentrated in degree 0 given
by a flat R-module) then we have that:

HH∗(R/k) ' Ω∗R/k

In general we had a filtration F ∗HKRHH(R/k) with n-th associated graded is given by:

Fn+1
HKR → FnHKR → LΩn

R/k[n] = (LΛn)(LR/k)[n]

This filtration is complete in the sense that:

lim←−F
∗
HKR = 0 ∈ D(k)

We define a similar filtration on HH(X/k) via:

FnHKR(X/k) := lim
U⊆X affine open

FnHKR(HH(O(U)/k))

Proposition 8.8. This defines a complete filtration on HH(X/k) i.e.we have that:

lim←−
n

FnHKR(X/k) = 0

And the n-th associated graded is given by:

lim
U⊆X

LΩn
U/k[n] = RΓ(X;LΩn

O/k[n])

Which is called the derived Hodge cohomology of X.

Remark 8.9. Note that if X is smooth we have LΩ = Ω i.e.:

RΓ(X; Ωn
O/k[n])

is just the sheaf cohomology of the sheaf of Kähler differentials, which is known as Hodge cohomol-
ogy.

Proof. The completeness is clear since limits commute with limits. The second claim follows since
cofibers commute with limits.

In particular we get a spectral sequence:

RiΓ(X;LΩn
O/k[n]) =⇒ HH∗(X/k)

Corollary 8.10. If Q ⊆ k then:

HH(X/k) '
∏

RΓ(X;LΩn
O/k[n])

Proof. We have seen this in the case X = Spec(k[x1, . . . , xn]). Hence it follows for any affine X by
non-abelian derivation. The general case follows(?).
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9 Spectra

We write S∗ for the category of pointed spaces. We have two functors:

Σ,Ω : S∗ → S∗

defined via:
X ∗

∗ ΣX

ΩX ∗

∗ X

Definition 9.1. A Spectrum is a sequence of spaces Xi where i ≥ 0 together with equivalences
Xi

∼−→ ΩXi+1. We define the category of spectra as:

Sp := Eq(S)∗ ×S∗ Eq(S∗)×S∗ . . .

where Eq(S∗) is the full subcategory of S∆!

∗ consisting of those maps which are equivalences. The
pullback is formed along the maps:

Eq(S∗)

Eq(S∗) S∗target

Ω◦source

Note that objects Sp are indeed spectra. Moreover a map consists of a list of maps Xi
fi−→ Yi

and choices of homotopies in the squares:

Xi Yi

ΩXi+1 ΩYi+1

fi

Ωfi+1

Remark 9.2. Alternatively we have that:

Sp ' lim(. . .
Ω−→ S∗

Ω−→ S∗) ∈ Cat∞

and moreover:
MapSp(X,Y ) ' lim(MapS∗(Xi, Yi))

Example 9.3. – (HA)i = K(A, i) with equivalences K(A, i− 1)
∼−→ ΩK(A, i)

– X ∈ S∗ the Suspension spectrum of X is given by:

(Σ∞X)i = colim
k

ΩkΣk+iX

in particular Σ∞S0 =: S is the Sphere Spectrum

Lemma 9.4. We have an equivalence:

MapSp(Σ∞X,Y ) ' MapS∗(X,Y0)
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Proof sketch. We have X → Y0 ' Ωk+iYk+i is adjoint to Σk+iX → Yk+i. Now applying Ωk we get
a map:

ΩkΣk+iX → Yi

inducing a map on the colimit:

(Σ∞X)i = colim
k

ΩkΣk+iX → Yi

Definition 9.5. We define the infinite loop space functor as:

Ω∞ :Sp→ S∗

Y 7→ Ω∞Y = Y0

Thus the previous lemma says that we have an adjunction Σ∞ a Ω∞

Example 9.6. For K ∈ S∗ finite we have that:

MapSp(Σ∞K,Σ∞X) ' MapS∗(K,Ω
∞Σ∞X)

= MapS∗(K, colim
k

ΩkΣkX)

' colim
k

MapS∗(K,Ω
kΣkX)

' colim
k

MapS∗(Σ
kK,ΣkX)

In particular for K = S0 we get that:

πnMap(S,Σ∞X) = πsnX

Lemma 9.7. Sp has all limits, filtered colimits and a zero object.

Proof. A zero object is given by Xi = ∗. Limits and filtered colimits commute with Ω since it is
a pullback. Thus by the limit formula we gave for mapping spaces these exist and are computed
pointwise.

Lemma 9.8. The functor Ω : Sp→ Sp is an equivalence.

Proof. Since limits are computed pointwise takes a spectrum (X0, X1, . . . ) to (ΩX0, X0, X1, . . . ),
thus the inverse is given by shifting in the other direction.

Proposition 9.9. Sp has all colimits and pushout squares are pullback squares and vice versa.

Proof. Any ∞-category with finite limits, a zero object and Ω is an equivalence has pushouts and
these are determined by the fact that pushout squares = pullback squares (Omitted). Once we
have pushouts we are done since we already have filtered colimits.

Note that Σ : Sp → Sp is inverse to Ω it is given by shifting to the left. In partiuclar it is not
computed pointwise. Moreover note that we have:

Yi = Ω∞ΣiY

Example 9.10. We have that:

[Σ∞X,ΣnHA]Sp = [X,K(A,n)]S∗ = Hn(X;A)

and similarly:
[ΣnS, Y ]Sp = [Sn,Ω∞]S∗ = πn(Ω∞Y )
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Lemma 9.11. For every Y ∈ Sp we have that:

Y ' colim
i

Σ−iΣ∞

where we denote Σ−i = Ωi

Proof. We have that:

MapSp(Y, Y ) ' lim
i

MapS∗(Yi, Zi)

' lim
i

MapSp(Σ∞Yi,Σ
iZ)

' lim
i

MapSp(Σ−iΣ∞Yi, Z)

' MapSp(colim
i

Σ−iΣ∞, Z)

Construction: Denote the singular chains of a space X by C∗(X) then we have a functor:

Sp→ D(Z)

Y 7→ colim
i

C∗(Yi)[−i]

which preserves colimits and maps Σ∞X to C∗(X) so in particular S 7→ Z[0].

Definition 9.12. Let Spfin ⊆ Sp be the full subcategory of objects of the form:

Σ−nΣ∞K with X ∈ Sfinite

Exercise T. his is closed under finite colimits.

In fact this can be described as the subcategory generated by S under finite colimits. Moreover
we have the following:

Proposition 9.13. Sp is freely generated under filtered colimits by Spfin i.e. Sp = Ind(Spfin)

Proof. We get a functor from the universal property of Ind. Moreover Spfin in Sp is compact since:

MapSp(Ω∞K, colim−−−→
j

Y j) ' MapS∗(K,Ω
∞Σn colim−−−→

j

Y j)

' colim−−−→
j

MapS∗(K,ω
∞ΣnY j)

where we have used that filtered colimits are computed pointwise. Now write:

Y = colim
i

Σ−iΣ∞Yi

and then each Yi as a filtered colimit of finite spaces which is always possible.

Analogy: Have Dperf(R) ⊆ D(R) the full subcategory of perfect complexes and we have:

D(R) = Ind(Dperf(R))

so we want to think of Sp as “D(S)” however additional subtleties arise from the fact that Map(S,S)
is not discrete. Moreover think of the singular chains functor C∗ : Sp→ D(Z) as the “basechange
along S→ Z”

Definition 9.14. X ∈ Sp is called n-connective if πiX = 0 for i < n and n-coconnective if πiX = 0
for i > n and denote the corresponding full subcategories as Sp≥n and Spleqn respectively.
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Proposition 9.15. The inclusion Sp≤n ↪−→ Sp has a left adjoint denoted τ≤n.

Proof. Xn = X, buo;d Xi as follows:
Pick generators of πi(Xi−1) which induce a map:⊕

ΣiS→ Xi−1

and define Xi as the cofiber. Then set τ≤nX := colimiXi, then we have:

– τ≤nX ∈ Sp≤n and πiτ≤nX = πiX by the long exact sequence on homotopy groups and using
fact that S is connective.

– Every map X → Y ∈ Sp≤n factor over these cofibers and thus over τ≤nX → Y

Definition 9.16. We denote by τ≤n be the fiber of the map X → τ≤n−1X

Lemma 9.17. 1. For X ∈ Sp≥n and Y ∈ Spn−1 we have Map(X,Y ) ' 0

2. We have an equivalence of categories Sp≥n ∩ Sp≤n ' Ab

Proof. Any map X → Y factors through τ≤n−1X ' 0 → Y which shows 1. For 2. obeserve that
πn gives a functor and that mapping spaces are discrete since:

πiMap(X,Y ) ' Map(ΣiX,Y) ' 0 for i > 0

If πnX is free then we can choose a map: ⊕
ΣnS→ X

which is an iso on πn and thus an equivalences under τ≤n. If it is not free chose a map bigoplusΣnS→
X which is surjective of πn, then the fiber has free πn. Use the exact sequence for πnMap(−, Y )
(??)

Postnikov Tower:
For every X we have a tower:

X

. . . τ≤n+1X τ≤nX τ≤n−1X . . .

H(πnX)[n+ 1]

fib

10 Symmetric monoidal ∞-categories

Recall:

– An (ordinary) symmetric monoidal category consists of the following data:

– C a category

– ⊗ : C× C→ C

– 1C ∈ C
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– natural isomorphisms:
(a⊗ b)⊗ c ∼−→ a⊗ (b⊗ c)

a⊗ 1C
∼−→ a

∼−→ 1C ⊗ a

a⊗ b ∼−→ b⊗ a

satisfying certain coherence conditions (e.g. Pentagon identity)

– We abbreviate this datum as (C,⊗) and write:

a1 ⊗ a2 ⊗ · · · ⊗ an := (((a1 ⊗ a2)⊗ a3)⊗ . . . )⊗ an

– A lax symmetric monoidal functor between symmetric monoidal categories C and D is given
by a functor F : C→ D together with natural morphisms:

– F (c)⊗D F (c′)→ F (c⊗C c
′) for c, c′ ∈ C

– 1D → F (1D)

satisfying certain compatibility conditions

– A lax symmetric monoidal functor is called a (strong) symmetric monoidal functor if the
maps are isomorphisms.

– A symmetric monoidal category (C,⊗) is called closed if for every object c ∈ C the functor:

−⊗ c : C→ C

admits a right adjoint denoted Hom(c,−). In particular it preserves colimits in C.

Proposition 10.1. Let R be a commutative ring, then the category ModR admits an essentially
unique closed symmetric monoidal structure with tensor unit R denoted:

⊗R : ModR×ModR → ModR

Exercise 10.2. Show this (Only the uniqueness?)

Moreover for any map R→ S of commutative rings the functor:

−⊗R S : ModR → ModS

canonically refines to a symmetric monoidal functor since:

(M ⊗R N)⊗R S ∼= (M ⊗R S)⊗S (N ⊗R S)

Goal today:

1. Define symmetric monoidal ∞-categories such that for an ordinary symmetric monoidal cat-
egory C the nerve N(C) is an example.

2. Define lax/strong symmetric monoidal functors.

Theorem 10.3. 1. The ∞-categories Sp and D(R) admit essentially unique closed symmetric
monoidal structures with units S respectively R

⊗S : Sp×Sp→ Sp ⊗LR : D(R)×D(R)→ D(R)

2. The functors:

C∗ : Sp→ D(Z) Σ∞ : S→ Sp −⊗LR S : D(R)→ D(R)

for any map R→ S inherit canonical strong symmetric monoidal structures
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Proof Sketch. For X ∈ Sp have:

– S⊗X ∼= X

– (Σ∞+ Y ) ' X ' Σ∞+ (colimY ∗)⊗X ' colimY (Σ∞+ ∗ ⊗X) ' colimY X

– (Σ−nY )⊗X ' Σ−n(Y ⊗X)

– For a general spectrum Y we have Y ' colim(Σ∞−nYn)
Thus Y ⊗X is determined up to equivalence.

Let Fin∗ be the category of finite pointed sets. Every object is isomorphic to a set 〈n〉 = {0, . . . , n}
with basepoint 0. For every 1 ≤ i ≤ n there is a map:

ρi : 〈n〉 → 〈1〉 k 7→

{
1 k = i

0 else

Definition 10.4. (1st version, Segal)
A symmetric monoidal category is a functor:

C : N(Fin∗)→ Cat∞

such that for every 〈n〉 the induced maps:

C(〈n〉) (ρi∗)−−→
n∏
i=1

C(〈1〉)

are equivalences.

Notation: We write C = C(〈1〉) and:

⊗ : C× C
∼−→ C(〈2〉) m∗−−→ C(〈1〉) = C

With m the map:

m : 〈2〉 → 〈1〉
0 7→ 0

1 7→ 1

2 7→ 1

and unit:
1 : ∗ = C(〈0〉)→ C(〈1〉) = C

Exercise 10.5. For a symmetric monoidal 1-category C construct a functor Fin∗ → Cat∞ which
takes a pointed set S

∐
∗ to C×S

Definition 10.6. A symmetric monoidal functor is given by a natural transformation C → D.
Hence one can define:

SymMonCat∞ ⊆ Fun(N(Fin∗,Cat∞))

as a full subcategory.

Definition 10.7. (2nd, Lurie):
A symmetric monoidal ∞ category is a functor:

C⊗ → N(Fin∗)

satisfying the following conditions:
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1. It is a cocartesian fibration.

2. The induced maps:

C⊗〈n〉
ρi!−→ (C⊗〈1〉)

×n

are equivalences. We again write:

C := C⊗〈1〉 ⊗ : C× C→ C⊗ − 〈2〉 m!−→ C⊗〈1〉 = C

Theorem 10.8 (Lurie). The two definitions are equivalent, that is for any such symmetric monoidal
category C⊗ → N(Fin∗) we get an induced functor:

N(Fin∗)→ Cat∞

〈n〉 7→ C⊗〈n〉

and vice versa.

Let (C,⊗) be a symmetric monoidal 1-category. We define C⊗ as follows:

– Objects: c1, . . . , cn objects in C, 〈n〉 ∈ Fin∗

– Morphisms from C1, . . . , cn to d1, . . . , dm are given by:

– 〈n〉 f−→ 〈m〉 a map in Fin∗

– for each k ∈ 〈m〉 \ 0 a map in C: ⊗
i∈f−1(k)

ci → dk

– There is a canonical projection C⊗ → Fin∗

A morphism f : 〈n〉 → 〈m〉 is called inert if the induced map:

f−1(〈m〉 \ 0)→ 〈m〉 \ 0

is a bijection.

Definition 10.9. A lax symmetric monoidal functor between symmetric monoidal ∞-categories
C⊗,D⊗ is a functor:

C⊗ D⊗

N(Fin∗)

F⊗

such that F⊗ sends coCartesian lifts of inert morphisms to coCartesian lifts.

Exercise 10.10. Check that for two symmetric monoidal 1-categories a lax monoidal functor C→
D induces a functor C⊗ → D⊗

Definition 10.11. Define a 1-categotry Ass⊗act with:

– Objects: finite sets

– Morphisms: maps S → T together with a total ordering on each f−1(t) ⊆ S

This is symmetric monoidal with respect to disjoint union.
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Write 〈1〉 for the 1-element set in Ass⊗act is an associative algebra object:

〈1〉
∐
〈1〉 → 〈1〉

∅→ 〈1〉

Definition 10.12. An associative algebra in a symmetric monoidal ∞-category C is given by a
symmetric monoidal functor:

N(Ass⊗act)→ C

the underlying object is the value at 〈1〉

Exercise 10.13. Check that the category of symmetric monoidal functors Ass⊗act → Ab is equivalent
to the category of rings.

Definition 10.14. For a finite, non-empty totally ordered set S we define:

Cut(S) :=
{

(S0, S1) | S0, S1 ⊆ S, S0 < S1, S0

∐
S1 = S

}
Citcyc(S) := Cut(S)�(S,∅) ∼ (∅, S)

Exercise 10.15. Check that Cut = ∆1 and Cutcyc = S1 = ∆1/∂∆1 as functors ∆op → Set

In fact Cutcyc defines a functor ∆
op → Ass⊗act, for a map f : S → T of totally ordered sets and

a cut (S0, S1), the preimage (f∗)−1(S0, S1) ⊆ Cutcyc(T ) is:

– If (S0, S1) is nontrivial then (f∗)−1(S0, S1) is given by all cuts “between” f(S0, S1). The
ordering is given by the natural one induced from S.

– If (S0, S1) is trivial then (f∗)−1(S0, S1) is given by all cuts “outside” of f(S). Here the
ordering starts with the elements > f(S) and then goes around and continues with those
< f(S)

Definition 10.16. For an algebra A : Ass⊗act → C we define the Hochschild-Object of A:

HH(A/C) := colim
∆op

(A ◦ Cutcyc)

Lemma 10.17. For an ordinary ring (or more genreally a dga), we have an algebra A in D(Z).
Then:

HH(A/D(Z)) ' HH(A/Z)

Proof. The functor Ch(Z)toD(Z) preserves tensor products of K-flat complexes. So if we take our
dga to be K-flat the functor preserves all the tensor products in the cyclic bar complex. Then use
that in D(Z), a colimit of a simplicial diagram is computed by a total complex.

Exercise 10.18. For an ordinary ring R check that the composite:

∆op Cutcyc

−−−−→ Ass⊗act
R−→ Ab

agrees with the cyclic Bar complex of R.

Definition 10.19. For a ring spectrum A (i.e. an associative algebra in Sp) we define the Topo-
logical Hochschild Homology of A as:

THH(A) := HH(A/Sp)

For an ordinary ring R we have the Eilenberg-MacLane spectrum HR which is canonically a ring
spectrum. We write:

THH(R) = THH(HR)
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Example 10.20. THH(S) = S

Definition 10.21. Define a 1-category LMod⊗act with::

– Objects: Finite sets with elements labeled (or “colored”) by {a,m} (i.e. a map S → {a,m})

– Morphisms: Maps S → T together with a total ordering on each fiber and:

– the fiber of an a-colored element is completely a-colored.

– the fiber of an m-colored element contains exactly one m-colored element which is also
the maximum.

We also define RMod⊗act the same way but replacing maximum with minimum at the end. A left
module in C is a symmtetric monoidal functor LMod⊗act → C

Moreover define a 1-category LRMod⊗act via:

– Objects finite colored sets as before with colors {r, a, l}

– maps f : S → T with a total ordering on each fiber and:

– fibers of a-colored elements are a-colored

– fibers of r-colored elements have exactly one r-colored elements which is the minimum
and the rest a-colored

– Same with l-colored but the maximum

A symmetric monoidal functor LRMod⊗act → C is a pair of functors LMod⊗act → C and RMod⊗act → C

which agree on Ass⊗act

Definition 10.22. N ⊗AM is the colimit of the composite:

∆op Cut(−)−−−−→ LRModact⊗
N,A,M−−−−→ C

Where we color (∅, S) as r, (S,∅) as l and all other cuts as a.

Remark 10.23. We can also do this with bimodules where we again have colors {a.m} with fibers
of m-colored elements have exactly one m-colored element with no further condition to obtain a
category BMod⊗act. Then Cutcyc factors through this and we can make define a version of Hochschild
Homology with coefficients in a bimodule HH(A/C;M).

Definition 10.24. Comm⊗act = Fin so a commutative algebra object in an ∞-category C is a
functor Fin = Comm⊗act → C

Lemma 10.25. For a commutative algebra A the object HH(A/C) again has a commutative algebra
structure.

Proof. Omitted

There is a functor H : D(Z) → Sp such that π∗(H(C) = H∗(C)) which is lax symmetric
monoidal and preserves colimits. Thus we get a natural map:

THH(HR)→ H(HH(R))

in partiucal a map:
THH∗(HR)→ HH∗(R)

In fact H caconically factors through an equivalence of ∞-categories:

D(Z)
∼−→ Mod(HZ)

which is symmetric monoidal. Hence we have:

H(HH(R)) = HH(HR/Mod(HZ)) = THH(HR/HZ)
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Example 10.26. If R is a Q-algbra then THH∗(R) → HH∗(R) is an isomorphism. This follows
since:

HQ ' S⊗HQ ' HZ⊗HQ

so in particular:
S⊗HR ' HZ⊗HR

and thus:
HR⊗S HR ' HR⊗HZ HR

by the explicit construction of the Bar complex.

Proposition 10.27. For an ordinary ring R the map:

THHi(R)→ HHi(R)

is an isomorphism for i ≤ 2 and surjective for i = 3

Proof. The fiber of the map:

THH(HR)→ THH(HR/HZ))

is the geometric realization of a simplicial diagram of the form:

...

fib(HR⊗S HR→ HR⊗HZ HR)

fib(HR→ HR)

The first term is clearly zero. The following terms are 2-connective (follows from the analysis of
the connectivity of the map S→ HZ) and thus the realization is 3-connective.

For Fp we see that:
THH2(Fp) ∼= HH2(Fp) ∼= Fp

with a generator denoted x.

Theorem 10.28 (Böckstedt). We have that:

THH∗(Fp) = Fp[x]

Note that the map:
Fp[x]→ Fp〈x〉

is zero in degrees ≥ 2p

11 En-algebras

C a symmetric monoidal ∞-category i.e.:

1. C a symmetric monoidal 1-category =⇒ N(C) symmetric monoidal ∞-cat

2. C a topologically/simplicially enriched symmetic monoidal category =⇒ N∆(C) is a sym-
metric monoidal ∞-category

3. The category of spaces S with the tensor product given by the product
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4. The category of pointed spaces S∗ with the smash product.

Recall:

– An associative algebra in C is a symmetric monoidal functor:

N(Ass⊗act)→ C

The category of such algebras is:

Alg(C) := Fun⊗(N(Ass⊗act,C)

– A commutative algebra in C is given by a symmetic monoidal functor:

N(Fin∗)→ C

with the category denoted as:

CAlg(C) := Fun⊗(Fin∗,C)

Warning: In a 1-category C we have that CAlg(C) is a full subcategory of Alg(C) i.e. being com-
mutative is a property. This false in ∞-categories! There is a map induced from the functor
Ass⊗act → Fin∗ which forgets the order on the preimage, but it’s not fully faithful.

Definition 11.1. Let 0 ≤ n < ∞, we define a symmetric monoidal ∞-category (E⊗n )act as the
homotopy coherent nerve of the topologically enriched with:

– Objects:
∐
kD

n with Dn = (0, 1)n

– Morphisms:
∐
kD

n →
∐
k′ D

n are given by rectilinear embeddings, i.e. emebeddings of topo-
logical spaces which on each disk is rectilinear, i.e. given by an affine linear map with matrix
of the form:

diag(α1, . . . , αn), αi ∈ R>0

This category is topologically enriched and and symmetric monoidal via disjoint union of disks.

Definition 11.2. An En-algebra in C is a symmetric monoidal functor:

(E⊗act)→ C, Alg(C) := Fun⊗((En)⊗act,C)

Mapping spaces in (E⊗n )act are determined by Map(
∐
kD

n, Dn). There is a natural map:

Map(
∐
k

Dn, Dn)→ Confk(D
n) = Hominj(

∐
k

∗, Dn)

given by evaluation at the center point.

Exercise 11.3. This map is a homotopy equivalence.

Thus in particular we get

rmMap(Dn, Dn) ' Conf1(Dn) = Dn ' ∗

Map(Dn
∐

Dn, Dn) ' Conf2(D1) ' Sn−1

Thus if we have a functor:
A : (E⊗n )act → C

for the underlying object A(Dn) = A we get a map:

Sn−1 → Map(A⊗A,A)
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Proposition 11.4. There is an equivalence of symmetric monoidal categories:

N(Ass⊗act)
'−→ (E⊗1 )act

sendiung S 7→
∐
S D

1

Proof. 1. (E⊗1 )act is essentially a 1-category, i.e. the mapping spaces are discrete. This is imme-
diate since they are simply given by linear orderings of D1 = (0, 1). Moreover it’s equivalent
to Ass⊗act for the same reason.

2. This (implicitly constructed) functor is symmetric monoidal.

3. One can show that a functor is an equivalence in the category of symmetric monoidal ∞-
categories iff it is an equivalence of underlying categories by using that equivalences in functor
categories are detected pointwise.

Corollary 11.5. AlgE1
(C) ' Alg(C)

Exercise 11.6. 1. Work out what E0-algebras are.

2. Work out what E2-algebras in the ∞-category Cat of 1-categories are

There are symmetric monoidal functors:

(E⊗0 )act
×D1

−−−→ (E⊗1 )act
×D1

−−−→ (E⊗2 )act → . . .

So we get induced functors:

· · · → AlgE2
(C)→ AlgE1

(C)→ AlgE0
(C)

Definition 11.7. The ∞-category of E∞-algebras is defined as the limit of this diagram in Cat∞

Theorem 11.8. We have an equivalence Alg[E]∞(C) ' CAlg(C)

Proof.

AlgE∞(C) ' lim←−
n

AlgEn(C)simeq lim←−
n

Fun⊗((En)act)

' Fun⊗(colim−−−→
n

(E⊗n )act,C)

' Fun⊗(N(Comm⊗act),C)

Exercise 11.9. Complete the proof by showing that:

colim−−−→
n

(E⊗ − n)act ' N(Comm⊗ − act)

Let (C,⊗) be a closed symmetric monoidal category, or weaker assume that − ⊗ c : C → C

commutes with filtered colimits and geometric realizations, and C has all colimits and limits.

Theorem 11.10. 1. The ∞-category AlgEn(C), 0 ≤ n ≤ ∞ admits all limits and colimits and
the functor:

AlgE−n(C)
evDn−−−→ C

preserves filtered colimits, geometric realizations (i.e. sifted colimits) and all limits. Moreover
it detects equivalences.

2. For n =∞ the coproduct is given by A⊗B, A,B ∈ CAlg(C)
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3. The ∞-category AlgEn(C) admits a symmetric monoidal structure such that the functor:

AlgEn(C)→ C

admits a canonical refinement to a symmetric monoidal functor.

Exercise 11.11. Work out what En-algebras in the 1-category Ab are and check the statement of
the theorem there.

Example 11.12. Consider (S,×), then X ∈ Alg(S) is a “monoid in S”. Then π0(X) is an actual
monoid in Set. We call X grouplike if π0X is a group ⇐⇒ the map X × X → X × X sending
(a, b) 7→ (ab, b) is a homotopy equivalence. An En algebra is called grouplike if the underlying
E1-algebra is.
For every pointed space X ∈ S∗ the n-fold loop space:

ΩnX = Map∗(S
n, X) = Map∗((D

n, ∂Dn), (X, ∗))

admits a canonical En-algebra structure in (S,×)

Exercise 11.13. Construct and En-algebra structure on ΩnX, i.e. a symmetric monoidal functor:

(E⊗n )act → S

by giving an explicit functor between the topologically enriched categories.

Theorem 11.14. (Boardman-Vogt)
The functor:

Ωn : Sn−conn
∗ → AlgEn(S)

is fully faithful with essential image given by the grouplike En-algebras for any 0 ≤ n <∞.

Proof. For n = 1 the functor:

Sconn
∗

Ω−→ Alggrp
E1

(S)

Has an inverse given by the Bar complex construction constructed in th previous lecture. In fact
we have naturally:

ΩBar(G) ' G Bar(G) = BG

Theorem 11.15. (Dunn-Additivity
For a symmetric monoidal ∞-category C we have:

AlgEn+m
(C) ' AlgEm(AlgEn(C)), m,m ≥ 0

Corollary 11.16. For any En-algebra A ∈ S and any connected, pointed space X ∈ Sconn
∗ we have

that:
MapEn(Ωn(ΣnX), A) ' MapS∗(X,A)

i.e. ΩnΣnX is the free En-algebra on X!

Proof. We can consider the subspace A′ ⊆ A consisting of the unit components π0(A′) ⊆ π0(A).
Then:

MapEn(ΩnΣnX,A) ' MapEn(ΩnΣnX,A′)

Similarly since X is connected:

MapS∗(X,A) ' MapS∗(X,A
′)

Thus we may assume that A is grouplike as well i.e. A ' ΩnY and hence:

MapEn(ΩnΣnX,ΩnY ) ' MapS∗(Σ
nX,Y ) ' MapS∗(X,Ω

nY ) ' MapS∗(X,A)
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Corollary 11.17. Assume that C has geometric realizations and ⊗ commutes with them in both
variables separately. The Bar-construction defines a functor:

Bar : AlgEn(C)/1 → AlgEn−1
(C)

Proof. Again follows since AlgEn(C) ' AlgE1
(C) using that the statement holds for n = 1

12 Böckstedt periodicity

We want to prove the following:

Theorem 12.1. (Böckstedt)

THH∗(Fp) ∼= Fp[x] , |x| = 2

We discuss a more structured but ultimately equivalent version of this:

Theorem 12.2. Böckstedt, Version 2
THH(Fp) is as an E1-algebra over GFp, free on one generator of degree 2, i.e.:

HH(Fp) ' H Fp⊗Σ∞ΩS3

Indeed for any other E1-algebra R we have:

MapE1/H Fp(H Fp⊗Σ∞ΩS3, R) ' MapE1
(ΩS3,Ω∞R)

' MapS∗(S
2,Ω∞R)

' MapSp(S2, R) = π2R

Let us first see why these are equivalent:

Proof. The element x ∈ THH2(Fp) we get from HH(Fp) defines an E1 map:

H Fp⊗Σ∞ΩS3 → THH(Fp)

which is an equivalence if and only if π∗THH(Fp) = Fp[X] since:

π∗(H Fp⊗Σ∞ΩS3) ' H∗(ΩS3;Fp) ' Fp[x]

where the Homology carries the Pontryagin product.

Exercise 12.3. Show the first iso!

Lemma 12.4. We have that:
THH(R) ' R⊗R⊗SRop R

Proof sketch. Write R ' R⊗R R = |Bar(R)|. Then:

R⊗R⊗SRop R = colim
∆op

R⊗R⊗SRop R⊗•+1 = colim
∆op

Barcyc(R) = THH(R)

Before we go further we need to understand H Fp⊗SH Fp the Dual Steenrod Algebra

Theorem 12.5. (Milnor) As an algebra we have:

π∗(H Fp⊗SGFp) ∼=

{
F2[ζ1, ζ2, . . . ], |ζi| = 2i − 1 for p = 2

ΛFp(τ0, τ1, . . . )⊗ Fp[ξ1, ξ2, . . . ], |τi| = 2pi − 1, |ξi| = 2pi − 2 for p 6= 2
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View GFp⊗S Fp as an E∞ −H Fp-algebra via the “inclusion” on the right factor.

Lemma 12.6. As an E2-H Fp-algebra, H Fp⊗SGFp is free on a generator of degree 1, i.e. we
have an equivalence:

H Fp⊗Σ∞Ω2S3 ∼−→ H Fp⊗S Fp

Proof of Böchstedt V2 using this.

THH(Fp) = H Fp⊗H Fp⊗SH FpH Fp
' H Fp⊗H Fp⊗Σ∞Ω2S3H Fp

moreover we have that:
H Fp ' H Fp⊗Σ∞∗

Hence since the functor H Fp⊗Σ∞(−) is symmetric monoidal monoidal and preserves colimits we
can also compute the original tensor expression by first taking the Bar-resolution in spaces:

' H Fp⊗Σ∞Bar(∗,Ω2S3, ∗)
' H Fp⊗Σ∞ΩS3

Remark 12.7. Böckstedts theorem and our lemma are equivalent since a map A→ B of connected
H Fp-algebras is an equivalence if and only if the map:

H Fp⊗AH Fp → H Fp⊗BH Fp

is an equivalence. This we apply to the map:

H Fp⊗Σ∞Ω2S3 → H Fp⊗SH Fp

which we get since the left hand side is free on one generator.

Exercise 12.8. 1. Let A be a connected H Fp-algebra. Show that a map N →M of connective
A-modules is an equivalence if:

H Fp⊗AN → H Fp⊗AM

is an equivalence.

2. Let A→ B be a map of connected H Fp-algebras with:

H Fp⊗AH Fp → H Fp⊗BH Fp

an equivalence. Show that then H Fp⊗AB ' H Fp and that A→ B is an equivalence.

Let p be odd, for an E∞-H Fp-algebra there are the Dyer-Lashof operations:

Qi : πn(R)→ πn+2(p−1)i(R)

βQi : πn(R)→ πn+2(p−1)i−1(R)

for each integer i ∈ Z. Moreover for |x| = n even we have Qn/2x = xp and Qix = 0 for i < n/2
(also valid for n odd). Similarly βQix = 0 for i ≤ n/2.

Q
n
2 for n even and Q

n+1
2 x, βQ

n+1
2 x for n odd are already defined for an E2algebra.

Theorem 12.9. (Dyer-Lashof, p = 2 Araki-Kudo)

H∗(Ω
2S3;Fp) = Λ(a,Q1a,QpQ1a, . . . )⊗ Fp

[
(βQ1)a, (βQp)Q1a, . . .

]
|a| = 1
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Theorem 12.10. (Steinberger)
On π∗(H Fp⊗S ⊗H Fp) we have:

τi = Qp
i−1
Qp

i−2 · · ·Q1τ0

ξi = βQp
i−1
Qp

i−2 · · ·Q1τ0

Proof of Lemma. We have that the map

π1(H Fp⊗SH Fp)
∼−→ π1(H Fp⊗HZH Fp) ∼= TorZ1 (Fp,Fp) = Fp

is an isomorphism.

Exercise 12.11. Show this using that the map S→ HZ is 1-connective

hence we get a map of E2-H Fp-algebras:

H Fp⊗Σ∞Ω2S3 → H Fp⊗SH Fp

which is an isomorphim on π1, but both sides are generated in the same way by the E2-Dyer-Lashof
operations. Hence it is an isomorphism on π∗.

13 Properties of THH

For k a commutative ring spectrum and R a k-algebra i.e. R ∈ CAlg(Modk)then:

THH(R/k) = HH(R/Modk)

in particular we have:
HH(R) ' THH(R/Z)

since D(R) ' ModHZ

Proposition 13.1. The functor:
THH : Alg(Sp)→ Sp

is symmetric monoidal. Where a tensor product of algebras is just the ordinary tensor product. In
particular we have that:

THH(A⊗S B) ' THH(A)⊗S THH(B)

More generally for a symmetric monoidal category which admits geometric realizations the functor:

HH(−/C) : Alg(C)→ C

is symmetric monoidal.

Proof. Consider the forgetful functor U : Alg(Sp) → Sp as an object in the symmetric monoidal
category Fun⊗(Alg(Sp,Sp). As such it is an algebra object (Represented by S ?) and in fact:

THH(−) ' HH(U/Fun⊗(Alg(Sp),Sp))

Corollary 13.2. If R is an En-ring spectrum then THH(R) is En−1.

Proof. We have that:

AlgEn(Sp) ' AlgEn−1
(AlgE1

(Sp))
AlgEn−1

(THH)
−−−−−−−−−−→ AlgEn−1

(Sp)
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In particular for n =∞ we have that THH(R) is also E∞
Recall: For A,B ∈ CAlg(Sp) we know that A⊗S B is the coproduct in CAlg(Sp)

Proposition 13.3. For R ∈ CAlg(Sp) we have that:

THH(R) = colim
S1

(R) = R⊗S
1 ∈ CAlg(Sp)

Where the colimit is taken over the constant diagram:

S1 → ∗ R−→ CAlg(Sp)

Exercise 13.4. Prove this! (We already proved that S1 = Barcyc as a simplicial set I think)

Warning: This colimit is different than the one taken in Sp. In fact the latter is given by:

R⊗ S1 = R⊗ Σ∞S1 ' R⊗ ΣR

Now we prove some base change formulas for THH:

Proposition 13.5. 1. For any lax symmetric monoidal funcotr C
F−→ D, A ∈ Alg(C) we get a

natural map:
HH(FA/D)→ F (HH(A/C))

2. If F is strong symmetric monoidal and preserves geometric realizations, then this map is an
equivalence.

Example 13.6. 1. Consider H : D(Z) → Sp which is symmetric monoidal. Hence we get a
map:

THH(R)→ H(HH(R/Z))

2. If k → k′ is a map of commutative ring spectra then the functor:

−⊗k k′ Modk → Modk′

is symmetric monoidal an preserves all colimits. Hence we have that:

THH(R/k)⊗k k′ ' THH(R⊗k k′/k′)

Recall that an ordinary Fp-algebra K is called perfect if the Frobenius is an isomorphism. We
have maps Hk → THH(k) and THH(Fp)→ THH(k) and hence on homotopy groups:

k → THH∗(k)

Fp[x]→ THH∗(k)

So we get a combined map:

Hk ⊗H Fp THH(Fp)→ THH(k) k[x]→ THH∗(k)

Theorem 13.7. (Böckstedt periodicity for perfect rings For any perfect Fp-algebra the map
k[x]→ THH∗(k) is an isomorphism. Equivalently THH(k) is the free E1-algebra on x over Hk

Proof. We use the fact that for k-perfect there is a commutative ring spectrum SW (k) called the
spherical Witt vectors such that:

SW (k) ⊗S H Fp ' k
Then we have that:

THH(k) = THH(SW (k) ⊗S H Fp) ' THH(SW (k))⊗S THH(Fp)
'
(
THH(SW (k))⊗S Fp

)
⊗Fp THH(Fp)

' THH(k/Fp)⊗Fp THH(Fp)

Hence it suffices to prove that:
THH(k/Fp) = HH(k/Fp)

is equal to k i.e. HH∗(k/Fp) = 0 for ∗ ≥ 1
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Exercise 13.8. Show this last claim.

For k an E∞-ring we have proven that HH(k) ' k⊗S
1

and hence we get a map THH(k) → k of
E∞-rings induced as:

THH(k) = colim
S1

k → colim
∗

k = k

such that the composite k → THH(k)→ k is the identity.

Remark 13.9. Such a retract THH(k)→ k does not exist in general if k is only En for n <∞

Theorem 13.10. If k is a commutative ring spectrum and R an associative k-algebra, then we
have that:

THH(R/k) ' THH(R)⊗THH(k) k

14 p-adic completion

Recall that an abelian group is called p-complete if it is complete (and separated ) with respect to
the p-adic topology (i.e. the nbhd basis given by pnA ⊆ A). Equivalently the natural map:

A
∼−→ lim←−

n

A/pn =: A∧p

is an isomorphism.

Definition 14.1. – For X ∈ Sp, n ∈ Z we define:

X/n := cofib(X
·n−→ X)

Equivalently X/n ∼= X ⊗S S/n.

– If n | m there is a natural map X/m→ X/n obtained as the cofibre in:

X X

X X

X/m X/n

m/n

·n·m

id

– For X ∈ Sp a spectrum we define:

X∧p := lim←−
n

X/pn

and get a canonical map X → X∧p induced from the projections.

– A spectrum X is called p-complete if the map X → X∧p is an equivalence. We denote by
Sp∧p ⊆ Sp be the full subcategory of p-complete Spectra.

Theorem 14.2. 1. For every spectrum X the spectrum X∧p is p-complete.

2. The functor (−)∧p : Sp→ Sp∧p is left adjoint to the inclusion Sp∧p ↪−→ Sp

3. The ∞-category Sp∧p has all limits and colimits.

Proof. 1. – Sp∧p is closed under limits and finite colimits since the cofiber and filtered limit
functors commute with these.
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– Observe that for any X the spectrum X/p is p-complete. (Somewhat subtle in general
the multiplication by p map is not nullhomotopic on X/p! For example happens on S/2)

– Inductively using the fibre sequence:

X/p
·pn−1

−−−→ X/pn → X/pn−1

see that all X/pn are p-complete

– Putting these together we esee that X∧p is p-complete.

2. From the first part we see that (−)∧p is idempotent, hence we get a canonical map:

Map(X∧p , Y )→ Map(X,Y )

for which we can construct an inverse (This basically works for any idempotent with some
caveats.)

3. Limits and finite colimits are clear. For an arbitrary diagram I
X−→ Sp∧p is given by:

Sp∧p
colim
I

Xi =

(
Sp

colim
I

Xi

)∧
p

which one can check explicitly.

Exercise 14.3. 1. Show that a spectrum X is p-complete if and only if:

lim(. . .
·p−→ X

·p−→ X
·p−→ X) ' 0

2. Show that X/p is p-complete

Definition 14.4. A map f : X → Y of spectra is called a p-dic equivalence if the induced map:

f∧p : X∧p → Y ∧p

is an equivalence.

Note that if X,Y are p-complete then f is a p-adic equivalence iff it is an equivalence.

Proposition 14.5. 1. A map f : X → Y is a p-adic equivalence iff the map f/p : X/p→ Y/p
is an equivalence.

2. For X,Y connective a map f : X → Y is a p-adic equivalence iff the map X⊗SFp → Y ⊗SFp
is an equivalence.

Exercise 14.6. Show this (First part is easy, second part uses some Postnikov tower tricks)

Proposition 14.7. For A an abelian group, then if A is p-complete we get that HA ∈ Sp is
p-complete. The converse fails in general, but if A has bounded order of p∞-torsion then it also
holds.

Definition 14.8. And abelian group A is called derived p-complete if HA is p-complete.

Remark 14.9. There is also a notin of p-completeness in D(Z). Then A is derived p-complete iff

it is p-complete in D(Z) i.e. A ' R lim←− cone(A
pn−→ A) ∈ D(Z)

Theorem 14.10. 1. A spectrum X is p-complete iff πnX is derived p-complete for ever n.

2. Assume that πnX has bounded order of p∞-torsion for each n, then π∗(X
∧
p ) = π∗(X)∧p
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Example 14.11. – we have that π∗S∧p =


Zp, ∗ = 0

p∞ torsion of π∗(S), ∗ > 0

0, ∗ < 0

– (HQ)∧p = 0 and HZp is p-complete

Monoidal properties:

– Sp∧p admits a closed symmetric monoidal structure given by:

X⊗̂pT := (X ⊗S Y )∧p

more precisely structur is uniquely characterized by the functor:

Sp
(−)∧p−−−→ Sp∧p

being strong symmetric monoidal.

– IF R is an En -algebra, then so is R∧p and the map R → R∧p is an En-map exhibiting R∧p as
the initial En-algebra under R. More precisely the p-completion is left adjoint to the inclusion
AlgE−n(Sp∧p ) ⊆ AlgEn(Sp).,y

Question: Can we recover any spectrum X from its p-completions X∧p at all primes p.

Recall: An abelian group is called rational if it is uniquely divisible ⇐⇒ it is a Q-vector space
⇐⇒ the map X → X ⊗Z Q = XQ is an iso.

Definition 14.12. A spectrum X is called rational if πn(X) is rational for each n. We denote by
SpQ ⊆ Sp the full subcategory of rational spectra.

Theorem 14.13. 1. X is rational iff it admits the structure of an HQ-module. (Which is
actually unique up to contractible choice.)

2. X ⊗S Q = XQ is rational and π∗(XQ) = π∗(X)Q

3. The functor −⊗S Q : Sp→ SpQ is left adjoint to the inclusion SpQ ⊆ Sp

4. SpQ ⊆ Sp is closed under all limits and colimits.

5. SpQ
∼= ModHQ ' D(Q)

6. SpQ is symmetric monoidal with X ⊗ Y = X ⊗S Y = X ⊗HQ Y with tensor unit HQ

Exercise 14.14. Show this using that HQ⊗S HQ = HQ

Slogan: Any spectrum X can be “recovered” from X∧p for all p, XQ and a certain gluing map.

Indeed we have maps X → X∧p , X → XQ and XQ → (XQ)∧p =: XQp which give a commuta-
tive square:

X
∏
pX
∧
p

XQ (
∏
pX)Q

Called the Hasse- or fracture square.

Theorem 14.15. – This square is a pullback for any spectrum X
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– Moreover we have a pullback of ∞-categories:

Sp
∏
p Sp∧p (Xp)

Sp∆1
Q SpQ

∏
p(Xp)Q

(−)∧p

ev1

For each n = 0, 1, 2, . . . ,∞ have a pullback:

AlgEn(Sp)
∏
p AlgEn(Sp∧p )

(AlgEn(SpQ))∆1 AlgEn(SpQ)

(−)∧p

ev1

Proof sketch of the first part. It suffices to show that the map on horizontal fibers is an equivalence.
This map is the rationalization hence it suffices to prove that the upper horizontal fiber is rational.
This follows since the on the fiber of the map X → X∧p the prime p acts invertibly since the mod
p reduction is 0. Combining this for al primes gives the claim.

15 THH of the integers

Theorem 15.1. (Böchsktedt)
We have an isomorphism:

THH∗(Z) =


Z, ∗ = 0

Z/n, ∗ = 2n− 1

0, else

In fact, THH∗(Z) is the homology of the DGA:

THH∗(Z) = H∗ (Z[x]⊗ Λ(e), |x| = 2, |e| = 1, ∂x = e, ∂e = 0)

These are equivalent, indeed the complex of the DGA has the form:

. . .
0−→ Zx2 ·2−→ Zex 0−→ Zx ·1−→ Ze 0−→ Z→ 0

Remark 15.2. One can show that in fact, THH(Z) is as an E1-algebra over HZ given as H(Z[x]⊗
Λ(e), ∂)

As a consequence of these results we get that:

THH(Z)/p = THH(Z)⊗HZ H Fp

is on homotopy groups isomorphic to the homology of the DGA:(
Fp[x]⊗Fp Λ(e), ∂x = e, ∂e = 0

)
Exercise 15.3. Compute the homology ring of this.

Definition 15.4. For a ring (spectrum) R we define:

– THH(R,Zp) = THH(R)∧p

– THH(R,Q) = THH(R)Q

– THH(R,Qp) = THH(R,Zp)Q
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and hence we have the Hasse square:

THH(R)
∏
p THH(R,Zp)

THH(R,Q)
∏
p THH(R,Qp)

Lemma 15.5. We have:

THH(R,Zp) = THH(R∧p ,Zp) = HH(R∧p /Sp∧p )

and moreover:
THH(R,Q) = THH(RQ/HQ) = HH(RQ/Q)

Proof. For the first part recalling how the colimits in Sp∧p are computed we immediately get:

THH(R,Zp) =

(
colim

∆op
Bcyc(R)

)∧
p

=

(
colim

∆op
Bcyc(R∧p )

)∧
p

= THH(R∧p ,Zp)

Moreover the right hand equality follows by noting that R∧p ⊗SR∧p ' R∧p ⊗S∧p R
∧
p and hence the Bar

complexes agree.
For the second statement we see from our basechange formula:

THH(R,Q) = THH(R)⊗S HQ ' THH(R⊗S HQ/HQ) ' THH(RQ/HQ)

Example 15.6.
H(Z,Q) = HH(Q/Q) = HQ

Theorem 15.7. We have that:

THH(Z,Zp) '


Zp, ∗ = 0

Zp/nZp, ∗ = 2n− 1

0, else

which is again isomorphic to the homology of the complex (Zp ⊗ Λ(e), ∂x = e, ∂e = 0)

It is immediate that the first theorem implies this one but the converse is also true:

Indeed. From the second statement we can read off that THH(Z,Qp) ' HQp and thus the fracture
square looks like:

THH(Z)
∏
p THH(Z,Zp)

HQ
∏
pHQp

and hence from the long exact seuqnce we immediately get THH0(Z) = Z and more interestingly:

THHn(Z) =
∏
p

THHn(Z,Zp) =
∏
p

Zp/nZp = Z/nZ
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Definition 15.8. We define a commutative ring spectrum:

S[z] = Z[N] = Σ∞+ N

Where N is considered as commutative algebra in (S,×).

– To give a discrete commutative ring R the structure of an S[z]-algebra is equivalent to giving
an element π ∈ R and mapping z 7→ π via the factorization:

S[x]→ HZ[x]→ HR

We consider Z as an Z[z]-algebra by sending z to p

Warning: If instead of a discrete ring we consider a commutative rings spectrum R, then an E∞-
map S[z]→ R is not the same as an element z ∈ π0R, in other words S[z] is not the free E∞-algebra
on a single generator. (It is however a free E1-algebra)

Theorem 15.9. (Relative Böckstedt periodicity)
We have that:

THH∗(Z/S[z],Zp) ' Zp[x]

Proof. We have:

THH(Z/S[z],Zp)/p ' THH(Z/S[z],Zp)⊗HZ H Fp
' THH(Z/S[z],Zp)⊗S[z] S
' THH(Z⊗S[z] S,Zp)
' THH(Fp)

Now study the long exact sequence :

THH∗+1(Fp) THH∗(Z/S[z],Zp) THH∗(Z/S[z],Zp) THH∗(Fp)
·p

Exercise 15.10. Use this to deduce that THH∗(Z/S[z],Zp) is concentrated in even degrees and
p-torsion free.

Hence there exists an element x ∈ THH(+2(Z/S[z]),Zp) lifting the Böckstedt element x ∈
THH2(Fp). Thus we get a map:

Zp[x→ THH∗(Z/S[z],Zp)]

which is an isomorphism after mod p reduction i.e. it is an isomoprhism.

Now note that we have:

THH(R/S[z]) = THH(R)⊗THH(S[z]) S[z]

= THH(R)⊗HZ⊗STHH(Z[z]) (HZ⊗S S[z])

' THH(R)⊗HH(Z[z]/Z) Z[z]

Using the HKR filtration we can deduce the following spectral sequence:

Proposition 15.11. There is a strongly convergent, multiplicative first quadrant spectral sequence:

THHn(R/S[z])⊗Z Λ(dz) ' THHn(R/S[z])⊗Z[z] Ωm
Z[z]/Z =⇒ THHn+m(R)

All of this works the same with Zp coefficients. Now we can prove the theorem we started the
lecture with:

Proof. The spectral sequence takes the form:

49



16 The circle action on THH

Definition 16.1. For any grouplike E1-algebra G in S and an∞-category C we define the category
of objects of C with G-action as:

RepG(C) := Fun(BG,C)

Given an action of G on X ∈ C we define:

XhG := colim
BG

X

XhG := lim
BG

X

Exercise 16.2. As a special case if X has the trivial action them we get:

XhG ' X ×BG

XhG ' Map(BG,X)

Proposition 16.3. We have an equivalence:

Fun(BS1, D(Z)) ' ModA(D(Z))

Where A was the DGA Z[ε]/ε2 with the 0 differential.

Proof Sketch. One can show that:

Fun(BS1, D(Z)) ' ModC∗(S1)

moreover we have maps FreeE1(ε) → C∗(S
1) and FreeE1(ε) → A which factor trough equivalences

from τ≤1FreeE1(ε) which are multiplicative since τ≤1 is lax monoidal on D(Z)≥0

Remark 16.4. This equivalence is not compatible with the symmetric monoidal structures.

Theorem 16.5.

On HH(R/C) we have a natural S1-action, i.e. a refinement:

HH : AlgE1
(C)→ Fun(BS1,C)

which agrees with the S1-action obtained from the Connes-operator.

Definition 16.6. The paracyclic category Λ∞ is the 1 category with:

– Objects: Totally ordered sets with Z-action, equivalent to 1
nZ

– Morphisms: Equivariant, order preserving maps

Remark 16.7. We have an S1 ' BZ-action on Λ∞ which is given by the map of 1-categories:

BZ× Λ∞ → Λ∞

which is the projection on points and on Hom-sets is given by:

Z×HomΛ∞(
1

n
Z,

1

m
Z)→ HomΛ∞(

1

n
Z,

1

m
Z)

(n, φ) 7→ φ+ n

Definition 16.8. The cyclic category Λ is the 1-category with:

– Objects: Same as Λ∞
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– Morphisms given by the qoutient: HomΛ( 1
nZ,

1
mZ) = HomΛ∞( 1

nZ,
1
mZ)Z

Lemma 16.9. On the level of ∞-categories we have that:

N(Λ) ' N(Λ∞)hS1

Lemma 16.10. We have an equivalence:

Fun(N(Λ),C) ' Fun(N(Λ∞),C)hS
1

Proof. This is almost the universal property except that the functor category is not a groupoid.
However doing the usual trick gives:

Map(D,Fun(N(Λ),C)) ' Map(N(Λ),Fun(D,C))

' Map(N(Λ∞),Fun(D,C))hS
1

' Map(D,Fun(N(Λ∞),C))hS
1

Definition 16.11. A cyclic object in C is a functor N(Λop)→ C.
We have a functor:

∆→ Λ∞

[n− 1] 7→ Z× [n− 1] (with lexicographic order)

where the Z action is induced by the natural one on Z. With our previous notation Z×[n−1] ∼= 1
nZ.

The underlying simplicial object is obtained via the map:

Fun(N(Λop),C)→ Fun(N(Λop
∞),C)→ Fun(N(∆op),C)

Lemma 16.12. The following diagram commutes:

Fun(Λop
∞ ,C) C

Fun(∆op,C)

colim

res colim

Lemma 16.13. For a cyclic object X the colimit colimΛop
∞ X ' colim∆op X carries a natural S1-

action.

Proof.

Fun(N(Λop),C)
∼−→ Fun(N(Λop

∞),C)hS
1 (colim)hS

1

−−−−−−→ ChS
1 ' Fun(BG,C)

Proof of the Theorem. Denote CutZ : Λop
∞ → Ass⊗act the functor that maps S to the set of “Z-

equivariant cuts” i.e. cuts of SZ with preimage of (Si) ∈ CutZ(S) in CutZ(T ) under some map
f : S → T consist of all cuts “between” f(S0), f(S1). This functor is Z-invariant on Morphisms so
it factors through Λ→ Ass⊗act. The restriction to ∆op is precisely Catcyc : ∆op → Ass⊗act

Exercise 16.14. Show the last statement.
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17 Negative Topological Cyclic Homology

Definition 17.1. For a rings spectrum R we define the negative topological cyclic Homology of R
as:

TC−(R) := THH(R)hS
1

Definition 17.2. And ∞-category C is called stable if it has finite limits and colimits and any
square in C:

A B

C D

is a pushout iff it is a pullback.

Lemma 17.3. If C is stable, then there is a unique lift:

Sp

Cop × C S
Map

map

which is exact in both variables separately.

Lemma 17.4. For I a small ∞-category we have that:

1. Fun(I, Sp) is stable

2. limI F ' mapFun(I,Sp)(constS, F )

Exercise 17.5. Prove this.

Proposition 17.6. We have that:

HC−(R) ' HH(R)hS
1 ∈ D(Z)

Proof. Identify D(Z) with ModHZ, then:

HH(R)hS
1 ' mapFun(BS1,Sp)(S, HH(R))

' mapFun(BS1,ModHZ)(HZ, HH(R))

' mapFun(BS1,D(Z))(Z, HH(R))

' mapMod(C∗(S1))(Z, HH(R))

' mapMod(A)(Z, HH(R))

' RHomA(Z, HH(R)) := HC−(R)

Lemma 17.7. The functor:
(−)hS

1
: Fun(BS1, Sp)→ Sp

is lax symmetric monoidal. Moreover the S1-action on THH(R) (and HH(R)) is compatible with
the ring structure obtained if R is E∞. Hence in this case we get an E∞-structure on TC−(R) and
HC−(R).

Lemma 17.8. Let BS1 → Sp be an S1-action on HA, then we have:

π∗(HA)hS
! ∼= A[t] = A⊗ Z[t], |A| = −2

52



Proof. The full subcategory of Sp on all Eilenberg-MacLane spectra (in degree 0) is a 1 category,
since:

Map(HA,HB) ' Hom(A,B)

so a functor BS1 → Sp sending ∗ 7→ HA is constant since BS1 is 1-connected. Using this we get
that:

HAhS
1 ' map(Σ∞BS1, HA)

Exercise 17.9. Show this by writing the suspension spectrum as a limit.

which has homotopy groups given by H∗(BS1, A) = H∗(CP∞, A)

Theorem 17.10. (Homotopy Fixed Point Spectra Sequence [HFPSS]) There is a multiplicative,
conditionally convergent spectral sequence:

π∗(X)[t] =⇒ π∗

(
XhS1

)
, |t| = (−2, 0)

Proof sketch. Have the Whitehead tower:

...
...

τ≥2X Hπ1X[1] (τ≥2X)hS
1

(Hπ1X)hS
1
[1]

τ≥1X Hπ0X (τ≥1X)hS
1

(Hπ0X)hS
1

τ≥0X (τ≥0X)hS
1

(−)hS
1

cofib

cofib

Remark 17.11. An S1-action on X actually gives a map Σ∞+ S
1 ⊗ X → X. The canonical map

Σ∞+ S
1 → Σ∞+ ∗ ' S splits, so we get an equivalence

Σ∞+ S
1 ' S⊕ Σ∞S1 ' S0 ⊕ S1

(for the first time we really mean the reduced suspension)
Thus we get a map ΣX ' S1 ⊗X → X i.e. a map:

b : πn(X)→ πn+1(X)

Lemma 17.12. In the HFPSS the differential d2 is determined by:

d2α = bα · t

d2t = ηt2

for α ∈ π∗(X)

Remark 17.13. 1. Observe that THH∗[Fp][t] = Fp[x][t] is concentrated in even degrees and
hence all differentials of the HFPSS for TC−(Fp) are zero and so the E∞-page is given by
Fp[x][t].

2. Hence we have that TC−2k+1(Fp) = 0 and moreover TC−2k(Fp) are complete filtered abelian

groups with associated graded given by a sequence of Fp’s. Now choose t̃ ∈ TC−−2 and
x̃i ∈ TC−2 lifts of t, x.
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3. TC−0 (Fp) → TC−0 (Fp) → Fp is surjective with kernel given by the ideal generated by t̃x̃. So
there is a relation p = at̃x̃

4. We have a map THH(Fp)→ HH(Fp) which is an iso on τ≤2, so we get an equivalence:

(τ≤2THH(Fp))hS
1 ∼−→ (τ≤2HH(Fp))hS

1

We saw in the SS for HC− that t̃x̃ = p for suitable choice of lifts. Hence we see that in fact
a has degree 0, since else p would die in the 2-truncation and hence a is a unit.

5. We can modify our choice of x̃ such that a = 1 so that t̃x̃ = 0. Hence we get a map:

Zp[t̃, x̃]/(p− t̃x̃)→ TC−∗ (Fp)

Theorem 17.14. The map above gives an isomorphism:

TC−∗ (Fp)
∼−→ Zp[t̃, x̃]/(p− t̃x̃)

i.e. we have:

TC−2k(Fp) ' Zp gen. by

{
x̃k, if k ≥ 0

t̃−k if k ≤ 0

18 The Tate Construction

Let G be a group object in (S,×) i.e. a group-like E1-space. Have the delooping BG ∈ S, then of
any ∞-category C we have the category of objects in C with G-action:

CBG := Fun(BG,C)

Construction:
Consider the underlying space of G as an object of SG×G by letting G×G act on G as:

(g, h) · x = gxh−1

Definition 18.1. We define a spectrum DG ∈ SpBG called the dualizing spectrum of G. as:

DG := (Σ∞+ G)h(G×1)

with its remaining G = 1×G-action

Example 18.2. Assume that G is finite, then:

Σ∞+ G = (
⊕
g∈G

S)hG ' S

Proof. Have the HFSS:
H∗(G,⊕g∈Gπ∗(S)) =⇒ π∗((⊕g∈GS)hG)

It is a classical result that:

H∗(G,⊕g∈GA) =

{
A, ∗ > 0

0, ∗ = 0

Hence the spectral sequence degenerates and gives the result.

Hence for a finite group we have DG = Striv.
If G is a compact Lie Group we have the following theorem:

Theorem 18.3. We have that DG = Sg where for any vector space V we define SV = Σ∞+ (V +)
and G acts on g by the adjoint representation.
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Example 18.4. Consider the circle group T = U(1) = S1, then we get:

DT = (S1)triv

Assume that BG ' (M,m0) where M is a closed smooth manifold, i.e. any closed manifold (M,m0)
and G = ΩM

Theorem 18.5. We have DG = S−Tm0M which as a functor is given by:

BG 'M → Sp

m 7→ S−TmM

which is the straightening of the tangent bundle.

Remark 18.6. For any space X one can define a dualizing spectrum:

DX =: X → Sp

for example by defining this functor on connected components: X '
∐
BGi and on BGi as before.

Construction:
Let C be a stable ∞-category which has all limits and colimits. For any E ∈ Sp and X ∈ C there
is an object:

E ⊗X ∈ C

(C is a module over Sp) defined such that:

−⊗X : Sp→ C

sends colimits of spectra to colimits in C and extends the tensoring over S. This can also be
characterized by saying that it is adjoint to the mapping spectrum.

Definition 18.7. G a group object in S and X ∈ CBG. We define the norm map:

NG : (DG⊗S X)hG → XhG

as the composite:(
(Σ∞+ G)h(G×1) ⊗S x

)
h(1×G)

→
(

(Σ∞+ G⊗S X)h(G×1)
)
h(1×G)

→
(
(Σ∞+ G⊗S X)h(1×G)

)h(G×1) ' XhG

where we consider X as a G×G-spectrum where G×1 acts trivially and 1×G is the given G-action
on X.

Exercise 18.8. Show the last equivalence.

Example 18.9. 1. If G is finite then:

(DG ⊗X)hG ' XhG → XhG

For X = Sp, X = HM, M and abelian group with G-action. Then we have a map:

HMhG HMhG

H(MG) H(MG)

where the lower map is the classical norm map. This follows from the fact that for general
X the composite:

X → XhG
NG−−→ XhG → X

is given by the sum of the multiplication by g maps ρg : X → X
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Exercise 18.10. Show this!

2. For G = T we get a map;
ΣXhT = (DT ⊗X)hT → XhT

Theorem 18.11. The norm map (DG ⊗X)hG → XhG is an equivalence provided that one of the
following conditions hold:

1. BG is a finite CW -complex

2. X is induced, that is X ' Σ∞+ ⊗ Y where G acts only on Σ∞+

Proof. 1. In this case all limits in the interchange maps are finite.

2. In the induced case the colimits and limits are still close enough to finite (Statement about
boundedness of group (co-)homology)

Example 18.12. Let BG = M be a closed manifold C = Sp, X = HZtriv

(HZ[−n])hG = (S−TM ⊗HZ)hG (DG ⊗X)hG XhG HZBg = map(BG,X)∼

which on homotopy groups induces an isomorphism:

H∗+n(M,Zorient)
∼−→ H−∗(M,Z)

which is precise Poincaré duality!
Replacing HZ by any spectrum we get Poincaré duality for ordinary (co-)homology theories.
If BG is a finite CW-comples this gives a a generalized version of Poincaré duality:

H∗(X,DX)→ H−∗(X)

DX is a parametrized sphere i.e. has underlying spectrum Sn iff X is a Poincaré duality space.

Theorem 18.13. The transformation:

(DG ⊗−)hG → (−)hG

exhibits the functor (DG ⊗ −)hG as the universal functor over (−)hG which preserves colimits,
i.e. the assembly map. In fact this uniquely determines DG

Definition 18.14. For X ∈ CBG we define the Tate Construction as:

XtG := cofib(NG)

Example 18.15. 1. If BG is finite then XtG = 0 for all X.

2. For G finite and X = HM , M an abelian grou with action we have:

(HM)tG = cofib(NG : HMhG → HMhG)

The homotopy groups are given by the classical Tate cohomology :

π∗((HM)tg) = Ĥ−∗(G,M)

Exercise 18.16. Describe these homotopy groups in terms of group (co)-homology.

Theorem 18.17. Assume that C is a symmetric monoidal ∞-category such that the tensor product
commutes with colimits in both variables separately. Then the functor (−)tG : CBG → C admits a
(unique) lax symmetric monidal structure such that:

(−)hG → (−)tG

admits a refinement to a symmetric monoidal transformation.

Corollary 18.18. If A ∈ CAlg(CBG) ' CAlg(C)BG then AhG → AtG is a map of commutative
algebras.
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19 Topological Periodic Homology

Definition 19.1. For a ring R we define the topological periodic homology of R as:

TP (R) := THH(R)tS
1

Remark 19.2. Since (−)tG is lax symmetric symmetric monoidal in a way that is compatible with
(−)hG we have that for a commutative ring R the spectrum TP (R) is a TC−(R)-algebra.

Proposition 19.3. For spectra X with G-action there is a multiplicative, conditionally convergent
spectra sequence:

πp
(
(Hπq(X))tG

)
=⇒ πp+q(X

tG)

Proof Sketch. Take the Whitehead filtration τ≥•X on X. Applying (−)tG gives a filtered spectrum
whose associated graded is given by applying (−)tG to Eilenberg MacLane Spectra which is where
the LHS comes from.

To use this result we need to know more about the Tate construction of Eilenberg MacLane Spectra.
For HZ, G = S1 consier the cofiber sequence:

(SadG ⊗HZ)hG → HZhS
1 → HZtS

1

Now since G is abelian the adjoint representation is trivial. Moreover since it is 1-dimensional the
representation sphere is given by S1, hence the left hand term is ΣHZhG. Since the fixed points
have homotopy groups in non-positive degreese and the shift of the orbits only in positive degrees
we get:

π∗(HZtS
1
) =

{
Z for ∗ even

0 else

Lemma 19.4. We have that as an algebra over HZhS1
:

π∗(HZtS
1
) ' Z[t±]

Proof. We use that the Tate-construction annihilates induced representations and work “back-
wards” spectral sequence: Consider the Tate SS for HZ⊗Σ∞+ S

1 . We know that (HZ⊗Σ∞+ S
1)1 = 0

Fix generators xi of π2iHZtS
1
, σ0, σ1 of H∗(S

1) where we set x−i = ti. Hence in the SS the generator
in degree (i, j) is xiσj .

q

Z 0 Zx−1σ1 0 x0σ1 0 Z 0

Z 0 Zx−1σ0 0 Zx0σ0 0 Z 0 p

∼
∼

∼

Then we have that:
d2(σ0) = ±tσ1

so since the spectral sequence computing the homotopy fixed points is degnerate we get from the
Leibniz rule that: d2(xiσ0) = ±xi · tσ1. But since this needs to be a generator it is also given by
±xi−1σ1 so we have:

xi · t = ±xi−1
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Now choose the generators xi such that all signs are + so we get that:

π2iHZtS
1

= Z[t±]

Exercise 19.5. Using a similar approach compute π∗(HZtCm) as a ring. (Hint: Use a free action
of Cm on a space with easy homology groups.)

Remark 19.6. Doing the same argument with HA ⊗ Σ∞+ S
1 gives that π∗A

tS1
= A[t±] as a Z-

module.

Proposition 19.7. If X is an object of Fun(BS1,ModHZ) i.e. a module over HZtriv in Fun(BS1, Sp)
(The point is that the action is required to be HZ-linear). In this case we have:

XtS1 ' XhS1 ⊗
HZhS1 HZtS

1

and in particular:
π∗X

tS1 ' π∗XhS1
[t−1]

Proof Sketch. We have:

HZtS
1 ' colim

(
HZhS

1 ·t−→ Σ2HZhS
1 ·t−→ Σ4HZhS

1 ·t−→ . . .
)

as HZhS1
-modules.

Exercise 19.8. Prove this!

So we need to show that:

XtS1
= colim(XhS1 ·t−→ XhS1 → . . . )

– Works for X Eilenberg-MacLane

– Both sides are compatible with fiber sequences.

– To extend to all X we need some connectivity arguments.

Proposition 19.9. We have that:

HP (R) ' HH(R)tS
1

Proof. Since HH(R) is equivariantly an HZ-module, HH(R)tS
1

is obtained from HH(R)tS
1

=
HC(R) by inverting t and this was precisely how we defined HP .

Proposition 19.10. The Tate spectral sequence for tS1 takes the form:

π∗(X)[t±t] =⇒ π∗(X
tS1

)

THH∗(R)[t±1] =⇒ TP∗(R)

Theorem 19.11. We have:
π∗(TP (Fp)) ' Zp[t±1]
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Proof. The Tate Spectral sequence is a peridocized version of the HFPSS and hence degenerates.
It takes the form:

•

Fp tx2 0 Fp x2 0 Fp t−1x2

0 0 0 0 0

Fp tx 0 Fp x 0 Fp t−1x2

0 0 0 0 0 0 0

Fp t2 0 Fp t 0 Fp 0 Fp t−1

and receivesa map fprm the HFPSS which is an iso on the left quadrant. Hence in negative degrees
we have:

π−2kTP (Fp) = π−2kTC
−(Fp) ∼= Zp · t̃

We can also choose a representative t̃−1 ∈ π2TP (Fp) of t−1. Then in fact by the ring structure:

t̃ · t̃−1 = 1 mod higher filtration

and hence it is a unit so t̃ is invertible and the negative powers t̃−k generate the π2k(TP (Fp) ∼=
Zp[t̃±]

20 The Tate Diagonal

For abelian groups the map of sets A → A ⊗ A, x 7→ x ⊗ x is not a homomorphism since we get
“error terms” of the form x⊗ y + y ⊗ x. Recall the norm map:

N : (A⊗p)Cp → (A⊗p)Cp

x1 ⊗ · · · ⊗ xp 7→
∑
σ∈Cp

xσ(1) ⊗ · · · ⊗ xσ(p)

Observation: The “diagonal” A→ A⊗p, x 7→ x⊗ · · · ⊗ x induces a homomorphism:

A→ (A⊗p)Cp/N(A⊗pCp )

This homomorphism exhibits (A⊗p)Cp/N(A⊗pCp ) as A/p i.e. it is surjective with kernel pA.

Exercise 20.1. Show these statements. For the second part show first that the functor taking A to
the right hand side is additive and then deduce the claim by showing it for finitely generated abelian
groups.

Theorem 20.2. There is a unique lax symmetric monoidal natural transformation:

X → (X⊗p)tCp

of functors Sp→ Sp
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Lemma 20.3. The Singer construction:

X 7→ (X⊗p)tCp

is an exact functor.

Proof. First look at Y ' X ⊕ Z, then we have:

(X + Z)⊗p ' X⊗p ⊕ Z⊗p ⊕
⊕
p

(
X⊗p−1 ⊗ Z

)
⊕
⊕
(p2)

(
X⊗(p−2) ⊗ Z⊗2

)
⊕ . . .

now note that the Cp-action on the error terms is the free action that permutes the summands
(using for example that the binomial coefficients are divisible by p), hence they are induced and
vanish after applying (−)tCp . In the general case think of a cofiber sequence:

X → Y → Z

as “2-stage filration” of Y :
· · · → 0→ X → Y

with associated graded Z ⊕X. We also get a filtration on Y ⊗p:

X⊗p
⊕

pX
⊗(p−1) ⊗ Y · · ·

⊕
pX ⊗ Y ⊗(p−1) Y ⊗p

Which is precisely the Day convolution i.e. the symmetric monoidal structure on filtered objects.
This is multiplicative on the associated graded which then becomes:

X⊗p
⊕

pX
⊗(p−1) ⊗ Z · · ·

⊕
pX ⊗ Z⊗(p−1) Z⊗p

So after applying (−)tCp we are left with:

(X⊗p)tCp 0 · · · 0 (Z⊗p)tCp

This is now the associated graded of a filtration of (Y ⊗p)tCp so we get a cofiber sequence:

(X⊗p)tCp → (Y ⊗p)tCp → (Z⊗p)tCp

which was the claim.

Remark 20.4. Note that while (ΣX)⊗p ' Σn(X⊗p) we just showed:

((ΣX)⊗p)tCp ' Σ(X⊗p)tCp

Indeed, (ΣX)⊗p ' Sp ⊗ sX⊗p, but the Cp-astion involves a nontrivial action on Sp (Called the
regular representation sphere). In fact (Sp)tCp ' (S1)tCp

Lemma 20.5. (Stable Yoneda) Let C be a stable ∞-category, we have a natural equivalence:

mapFunex(map(X,−), F ) ' F (X)

Proof Sketch. A natural transformation map(X,−) → F is the same as a sequence of compatible
natural transformation:

Ω∞Map(Σ−nX,−)→ Ω∞ΣnF (−)

i.e. by the ordinary Yoneda this is a sequence of points in :

Ω∞ΣnF (Σ−nX) ' Ω6∞F (X)

i.e. we get that:
MapFunex(C,Sp)(map(X,−), F ) ' Ω∞F (X)
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Remark 20.6. In particular we have seen that natural transformations X → (X⊗p)tCp correspond
to maps S→ (S⊗p)tCp ' StCp . Thus the Tate diagonal is also given by the composition:

S→ ShCp can−−→ StCp

Lemma 20.7. The functor map(S,−) is initial among lax symmetric monoidal exact functors from
Sp to itself.

The following is a very deep theorem in stable homotopy theory:

Theorem 20.8. For X ∈ Sp bounded below, then:

X → (X⊗p)tCp

exhibits (X⊗p)tCp as X∧p (!!!). In particular (X⊗p)tCp has the same connectivity (!) and for the
sphere we get:

StCp ' S∧p
Remark 20.9. The last equivalence is a special case of the Segal Conjecture (Carlson)

Definition 20.10. For an E∞-ring R the multiplication map gives the Tate-valued Frobenius:

R
∆−→ (R⊗p)tCp → RtCp

Using that in the multiplication map factors through the Cp-orbits.

Remark 20.11. We think of this as a spectral analogue of the ordinary Frobenius:

R→ R/p

x 7→ xp

Exercise 20.12. Check that his is a ringhomomorphism and that reducing mod p and R being
commutative are necessary.

Applied to map(Σ∞+ X,E) we get the so called Power Operations.

21 The cyclotomic structure

For R a ring spectrum THH(R) ∈ SpBS
1

and so we defined:

TC−(R) = THH(R)hS
1
, TP (R) = THH(R)tS

1

this works in any stable co-complete symmetric monoidal ∞-category in place of Sp. No we
introduce additional structure which is specific to spectra:
Construction:
Assume we have a fiber sequence:

X → Y → Z

of pointed connected spaces which we write as:

BH → BG→ B(G/H)

Then there is a functor:

B(G/H)→ S

∗ 7→ BH

which classifies BG, i.e. G/H acts on BH such that:

(BH)hG/H ' BG
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Exercise 21.1. For a normal subgroup H ⊆ G of a finite group, describe the G/H-action on BH
obtained from the induced fiber sequence:

BH → BH → B(G/H)

Consequence: For an ∞-category C we have:

Fun(BG,C) ' Fun(BH,C)hG/H

(With some additional work) this implies that the functors:

(−)hH , (−)tH : Fun(BH,C)→ C

induce functors:

(−)hH , (−)tH : Fun(BG,C) = Fun(BH,C)→ Fun(∗,C)hG/H = Fun(B(G/H),C)

i.e. for a normal subgroup H ⊆ G if X has a G-action, then XhH , XtH have a “residual” G/H-
action such that:

(XhH)hG/H ' XhG

Example 21.2. Let G = T = U(1) = S1 and H = Cp ⊆ T the cyclic group of order p embedded as
the roots of unity in T. Then for X ∈ CBT we have that XhCp and XtCp have residual T/Cp-actions.
We identify:

T/Cp
∼−→ T

z 7→ zp

Definition 21.3. A cyclotomic structure on a spectrum with T-action X ∈ SpBT is given by
maps:

ϕp : X → XtCp

that are T-equivariant, for every prime p. We refer to ϕp as the cyclotomic Frobenius.

– A cyclotomic spectrum is a spectrum with T-action and cyclotomic structure.

Theorem 21.4. For every ring spectrum R, THH(R) admits a natural cyclotomic structure.

Remark 21.5. – The cyclotomic structure on THH(R) is induced from the Tate-diagonal
∆p : id→ Tp.

– It does not exists in general for HH(R/C) where C is an arbitrary stable symmetric monoidal
∞-category. One can for example prove that ub D(Z) there is no natural map:

X → (X ⊗Z · · · ⊗Z)tCp

Therefore HH(R/Z) does not admit any sort of cyclotomic structure.

First construction for an E∞ − ring: We need the following Tool called induction:
Let C be an ∞-category with all small colimits, then for any group G ∈ S we have a forgetful
functor:

CBG → C

Proposition 21.6. This functor has a left adjoint given by:

c ∈ C 7→ colim
G

(constc) = c⊗G

with G-action G.

62



Proof. We have that:

MapCBg(c⊗G, d) ' MapC(c⊗G, d)hG

' MapS(G,MapC(c, d))hG

' MapC(c, d)

Example 21.7. – C = Sp and G finite, then
⊕

g∈G c is the free object with G-action on c.

– For G = T we get c⊗ Tc⊕ c[1]

Let C = CAlg(Sp) and G finite, R ∈ C. then we have:

colim
G

(R) =
⊗
G

R = R⊗G

with the permutation G− action.

Proposition 21.8. For R ∈ CAlg(Sp) we have that R → THH(R) exhibits THH(R) as the free
E∞-ring with T-action under R.

Proof. By our general formula the free object is given by:

colim
T

R = R⊗T = R⊗R⊗R R = THH(R)

The fact that this T-action agrees with the previously constructed via cyclic objects is omitted.
(One observes that in the commutative cases one actually gets a cyclic object in E∞-rings and the
action is literally the on given on the simplicial object S1).

Construction:

– For any R ∈ CAlg(Sp) we have the map R→ THH(R)

– The target has a T-action, in particular we get an induced Cp-action. Thus we get a unique
extension to a Cp-equivariant map:

R⊗ . . . R︸ ︷︷ ︸
ptimes

→ THH(R)

Exercise 21.9. Check that this map agrees with the inclusion of the degree p part of the
cyclic Bar complex.

This induces a map:
(R⊗ · · · ⊗R→ THH(R)tCp)

– The Tate diagonal is a map of E∞-rings:

R→ (R⊗ · · · ⊗R)tCp

Proposition 21.10. There is a unique T-equivariant map of E∞-rings:

THH(R)
ϕp−→ THH(R)tCp

fitting into the diagram:

R THH(R)

(R⊗ · · · ⊗R)tCp THH(R)tCp

∃!ϕp∆p
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The case of R ∈ AlgE1
(Sp):

Recall that;
THH(R) = colim

[n]∈∆op
(R⊗n+1) = colim

∆op
(THH(R)•)

Where THH(R)• : Λ → Sp is in fact a cyclic object. We want to derive the cyclotomic structure
from the map of cyclic objects:

C3 C2

. . . R⊗R⊗R R⊗R R

. . . (R⊗3p)tCp (R⊗2p)tCp (R⊗p)tCp

∆p

given by applying the Tate Diagonal to R⊗n. The main complication comes from the way of seeing
the target as a cyclic object. This is denoted (sdpTHH(R))tCp .

Exercise 21.11. For an ordinary associative ring R, explicitly describe a cyclic object whose un-
derlying simplicial object has degree K part (R⊗p(k+1))Cp

As a result we get a map of spectra with T-action:

THH(R) = colim
∆op

(THH(R)•)→ colim
∆op

((sdpTHH(R))tCp)

' colim
[n]∈∆op

(
(R⊗p(n+1))tCp

)
→
(

colim
[n]∈∆op

(R⊗p(n+1))

)tCp
= THH(R)tCp

22 Definition of Topological Cyclic Homology

Recall that on Topological Hochschild Homology we had a cyclotomic structure, i.e. for every prime
number p, we had a T-equivariant map:

THH(R)→ THH(R)tCp

Definition 22.1. The ∞-category of cyclotomic spectra is the pullback:

CycSp
∏
p Sp∆1

SpBT
∏
p SpBT × SpBT

(id,(−)tCP )p

(ev0,ev1)p

In particular a map of cyclotomic spectra (X,ϕp) to (Y, ϕ′p) is given by:

1. A T-equivariant map X
f−→ Y

2. For every prime p a T-equivariant homotopy filling the square:

X Y

XtCp Y tCp
f tCp

ϕp ϕ′p

f
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The mapping space is given as the equalizer:

MapCycSp(X,Y ) MapSpBT(X,Y )
∏
p MapSpT(X,Y tCp)

(ϕ′p)∗

ϕ∗p

Proposition 22.2. 1. CycSp is a stable ∞-category and the equalizer formula also holds for
mapping spectra.

2. CycSp has all limits and colimits.

3. CycSp has a symmetric monoidal structure given by:

(X,ϕp)⊗ (Y, ϕ′p) := (X ⊗S Y ), X ⊗S Y → XtCp ⊗S Y tCp → (X ⊗ Y )tCp

where we use that the Tate construction is lax symmetric monoidal.

4. A commutative algebra in CycSp is given by:

(a) X ∈ CAlg(Sp)BT

(b) T-equivariant maps of commutative algebra objects:

ϕp : X → XtCp

In particular for an E∞-ring is a commutative algebra in CycSp

Exercise 22.3. Show the first part

Recall: We had defined:

TC−(R) := THH(R)hS
1

= mapSpBT(Striv, THH(R))

And we will five a similar description for TC!

Example 22.4. Striv is canonically a cyclotomic spectrum (E∞):

– The underlying spectrum with T-action is Striv

– For every p the map:
S→ StCp

is the unit, i.e. the map:
S→ ShCp can−−→ StCp

where the first map is the pullback of BCp → ∗.

This is in fact the tensor unit in CycSp.

Exercise 22.5. Lift the factorisation S→ ShCp → StCp to a diagram of T-equivariant maps.

Definition 22.6. – For a ring spectrum R we define:

TC(R) := mapCycSp(Striv, THH(R))

– If R is commutative, then this is an E∞-ring sppectrum
We will write TC∗(R) = π∗TC(R) as usual.

More general for any cyclotomic spectrum X we write:

TC(X) := mapCycSp(Striv, X)

so that in particular TC(R) = TC(THH(R)).
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Let’s explicitly evaluate this formula:

TC(X) = mapCycSp(Striv, X) ' Eq

(
mapSpT(Striv, X)⇒

∏
p

mapSpBT(Striv, XtCp)

)

' Eq

(
XhT ⇒

∏
p

(
XtCp

)hT)

' fib

(
XhT ϕhTp −can

−−−−−→
∏
p

(
XtCp

)hT)

with ϕhTp : XhT → (XtCp)hT and can given by the induced map XhT = (XhCp)hT → (XtCp)hT

Theorem 22.7. Assume that X is bounded below with T-action, then the canonical map:

XtT → (XtCp)hT

exhibits the right hand side as the p-completion of the left hand side. Moreover if X is p-complete
then so is XtT.

Corollary 22.8. If X ∈ CycSp with underlying spectrum bounded below, then:

ϕhTp : XhT →
(
XtCp

)hT
=
(
XtT

)∧
p

ϕ : XhT →
(
XtT

)∧
:=
∏
p

(
XtT

)∧
p

So we get that:

TC(X) ' fib

(
XhT ϕ−can−−−−→

(
XtT

)∧)
And in particular for a connective ring spectrum R:

TC(R) ' fib
(
TC−(R)

ϕ−can−−−−→ TP (R)∧
)

For X a qcsqs scheme we define:

THH(X) := lim
U⊆Xaffine open

THH(OX)

TC−(X) := THH(X)hT = lim
U⊆X affine open

TC−(OX)

TP (X) := THH(X)tT = lim
U⊆X affine open

TP (OX)

TC(X) := TC(THH(X)) ' lim
U⊆X

TC(OU ) ' Eq
(
TC−(X)⇒ TP (X)∧

)
Remark 22.9. one can show, that for X ∈ CycSp n-connective that:

TC(X)∧p = TC(X,Zp)

is n − 1-connective. In particular TC(R,Zp) for R a ring or connective ring spectrum, is −1-
connective.
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