
Lord of the K(n)-local rings: The two Towers

February 7, 2024

This talk is an overview of the the preprint [BSSW23] by Barthel, Schlank, Stapleton
and Weinstein. The authors compute the rational homotopy groups of the K(n)-local sphere
by showing that the chromatic vanishing conjecture holds rationally.

1 The Setup

Fix a prime p. Our goal in life is to understand the homotopy groups of the sphere spectrum
π∗S. We can do this “one prime at a time” by considering the localization S(p) where we
invert all primes ̸= p. This is still too hard to attack directly. Here chromatic homotopy
theory provides an iterative approach by approximating the p-local sphere via stages of the
chromatic tower

S(p) ≃ lim (· · · → L2S→ L1S→ L0S ≃ Q) .

Here Ln = LE(n) is the Bousfield localization at the Morava E-theory spectrum of height
n. The localization Ln is meant to capture information at “height ≤ n”. We can describe
the associated graded of this tower via the chromatic fracture square

LnS LK(n)S

Ln−1S Ln−1LK(n)S

where K(n) is the n-th Morava K-theory spectrum. The localization LK(nm) is supposed
to capture information “at height = n”. Thus, if we could understand the spectrum LK(n)S
we would have a shot at working our way up the chromatic tower.

Question 1.1. How do we access π∗LK(n)S?

The idea is to descend along the unit map LK(n)S → E, where E denotes the Morava
E-theory spectrum of height n. Let us collect some facts about E-theory to make this
precise.

Theorem 1.2 (Goerss-Hopkins-Miller, Lurie). Let
∫
perf

Mfg=n denote the the category of

pairs (k,Γ) where k is a perfect Fp-algebra and Γ is a formal group of height n over k. Then
there exists a fully faithful functor∫

perf

Mfg=n → CAlg(SpK(n)) (k,Γ) 7→ E(k,Γ)

together with a canonical isomorphism Spf(π0E(k,Γ)) ≃ DefΓ. Here DefΓ denotes the defor-
mation functor which assigns to any infinitesimal thickening k′ → k the set of deformations
of Γ to k′ i.e.

DefΓ(k
′) = π0fibΓ (Mfg(k′)→ Mfg(k)) .
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Moreover, there exists a (non-canonical) isomorphism

π∗E(k,Γ) ≃W (k)[[u1, . . . un−1]][β
±] |β| = 2.

The spectrum E(k,Γ) is called Morava E-theory or Lubin-Tate-theory. Over an alge-
braically closed field of characteristic p, all formal groups non-canonically are isomorphic
and thus, we can once and for all fix an algebraic closure k of Fp and formal group of height
n over k. Then E := E(k,Γ) is what is commonly referred to as E-theory when people are
lazy about notation and we will also follow this convention.

Definition 1.3. The Morava stabilizer group G is defined as

G := Aut(Γ, k),

i.e. the group of pairs of autormorphisms (σ, f) fitting into a commutative diagram:

Γ Γ

Spec(k) Spec(k)σ

f

This is a profinite group sitting in a split exact sequence

Aut(Γ)→ G→ Gal(k/Fp) ≃ Ẑ

i.e. we have G ≃ Aut(Γ) ⋊ Gal(k/Fp) where the elements of the Galois group act on Γ by
applying them to the coeffecients of the power series.

Since E(−,−) is a functor, we immediately get an action of G on E via maps of K(n)-
local ring spectra. Moreover, this action is continuous with respect to the profinite topology
on G and a certain adic topology on E. More precisely, it can be promoted to a continuous
G-action on the spectral stack Spf(E). The following theorem should be thought of as saying
that the unit map LK(n)S → E is a pro-Galois cover with Galois group G. This precise
formulation of the theorem is due to Gregoric.

Theorem 1.4 (Devinatz-Hopkins). The unit LK(n)S→ E is equivariant with respect to the
trivial G-action on LK(n)S and induces an equivalence

LK(n)S ≃ EhG := O(Spf(E)/G)

Analyzing the associated descent datum gives a spectral sequence

H∗
cont(G, π∗E)⇒ π∗LK(n)S

which is often called the Devinatz-Hopkins spectral sequence. This means all we need to do
is understand the action of the Morava stabilizer group on π∗E and we can start computing.
This is however notoriously difficult, since we are trying to understand a Galois action and
an action of power series via composition simultaneously. The paper [BSSW23] shows that,
if we rationalize the spectral sequence completely collapses and we obtain isomorphisms

H∗
cont(G, π∗E)⊗Qp ≃ H∗

cont(G, π0E)⊗Qp ≃ H∗
cont(G,W (k))⊗Qp ≃ ΛQp(ζ1, . . . ζn)

Where G acts on W (k) via its quotient Gal(Fp). None of these equivalences are clear and
we will discuss them in detail. For now, this yields the main theorem of the paper.
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Theorem 1.5 ([BSSW23]). There is an isomorphism of graded Q-algebras

π∗LK(n)S⊗Q ≃ ΛQp
(ζ1, . . . ζn)

with deg(ζi) = 1− 2i.

The first step of this computation is the equivalence

H∗
cont(G, π∗E)⊗Qp ≃ H∗

cont(G, π0E)⊗Qp,

which is crucial as we can use the geometric interpretation of Spf(π0E) to understand its
cohomology. Let us begin with this before diving into geometry.
For this, we use the following fact: Suppose G is a profinite group acting continuously
on an abelian group A and suppose we have a closed normal subgroup H ⊆ G. Then
H∗

cont(H,A) = 0 implies that H∗
cont(G,A) = 0. This is a concequence of the Hochschild-

Lyndon-Serre spectral sequence, or, if you are condensed enough, the fact that derived
functors compose,i.e.

AhG ≃ (AhH)hG/H

Proposition 1.6. For every t ̸= 0 we have that

H∗
cont(G, πtE)⊗Q ≃ H∗

cont(G, πtE ⊗Q) ≃ 0

Proof. We have an exact sequence

Aut(Γ)→ G→ Gal(k/Fp) ≃ Ẑ.

Moreover, the assignment n 7→ [n] ∈ End(Γ) extends to an injection Zp → End(Γ) and hence
we have a normal subgroup Z×

p ⊆ Aut(Γ). Thinking of (Zp,+) as a subgroup of Z×
p , ·) via

1 7→ 1 + p, we obtain another exact sequence

Zp → Aut(Γ)→ Aut(Γ)/Zp.

Thus, it suffices to show that H∗
cont(Zp, πtE ⊗ Q) = 0 where, tracing the definitions, the

generator of Zp acts via multiplication by (1 + p)
t
. This cohomology is computed by the

complex Qp-modules

πtE ⊗Q (1+p)t−1−−−−−−→ πtE ⊗Q

which is clearly acyclic since we assumed t ̸= 0.

The next step is the main computation of the paper. Write W (k) = W and A = π0E.

Theorem 1.7 ([BSSW23]). For every i, the inclusion W ⊆ A induces a split injection

Hi
cont(G,W )→ Hi

cont(G, A)

whose cokernel is killed by a power of p independent of i.

Remark 1.8. In fact, for height n = 1, 2 the cokernel is known to completely vanish. The
chromatic vanishing conjecture states that this is true for all heights. Whether this is true
is wide open.

The splitting of Theorem 1.7 already exists on the level of G-representations.

Proposition 1.9. The map W → A admits a G-equivariant retraction, giving a G-equivariant
equivalencd A ≃W ⊕Ac.

Proof. Previous Talk.
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As promised, the way this theorem is attacked is using the geometry of Lubin-Tate space
LT := Spf(A). The idea is that H∗

cont(G, A) should be thought of as the cohomology of he
quotient stack LT/G. After passing to the rigid analytic fiber (i.e. rationalizing in a sense),
this space can also be described as a quotient of the Drinfeld upper half plane H, which is
given by Pn−1

Qp
with some points removed, together with the natural action of GLn(Qp). The

cohomology of H/GLn we can actually compute, and this results in the theorem. To make
this story precise, we need some technology.

2 Technology

2.1 Rigid analytic geometry

In the following let K = W [1/p]. What we want is a version of algebraic geometry in
which the generic fiber A⊗̂K ≃ K[[x1, . . . , xn−1]] cohomologically behaves like a p-adic
n-dimensional formal disk. This is provided by the theory of adic spaces.

Definition 2.1. A Huber ring is a topological ring A such that there exists an open subring
A0 ⊆ A and a finitely generated ideal I ⊆ A0 such that {In}n≥0 is a neighbourhood basis of
0. A Huber pair (A,A+) consists of a Huber ring A and an open, integrally closed subring
A+ ⊆ A such that for each f ∈ A+ and each n ≥ 0, there exists a large N > 0 such that
INfk ∈ In for all k.

Example 2.2. 1. The primordial example is the pair (Qp,Zp) with the p-adic topology.
Notice that here the Huber ring A is actually a field, so we really need the ideal I to
come from an open subring. Moreover, (Zp,Zp) is also a Huber pair, while (Qp,Qp)
is not.

2. The pair (W [[x1, . . . , xn]],W [[x1, . . . , xn]]) is a Huber pair with respect to the (p, x1, . . . xn)-
adic topology.

Definition 2.3. Let (A,A+) be a Huber pair. The adic spectrum Spa(A,A+) is defined to
be the set of isomorphism classes of continuous multiplicative functions |−| : A → H ∪ {0}
such that |A+| ≤ 1, with H a totally ordered abelian group. We equip Spa(A,A+) with the
topology generated by the open subsets

U

(
f1, . . . , fm

g

)
:= {|−| ∈ Spa(A,A+) | |fi| ≤ |g|}

Example 2.4. 1. The space Spa(Qp[[t]],Zp[[t]]), i.e. the generic fiber of Spa(Zp[[t]],Zp[[t]])
is a closed disk of radius one. To see this, observe that for every α ∈ Qp with |α| ≤ 1
we have a map Qp[[t]]→ Z given by taking f to |f(α)|. In fact, one can show that all
continouous valuations arise in this way.

2. Similarly, the adic spectrum of (Qp⟨T ⟩,Zp⟨T ⟩) is the open disk of radius one. Here the
angled brackets indicate the ring of power series which converge in the p-adic topology.

Definition 2.5. Let (A,A+) be a Huber pair and X = Spa(A,A+). We define sheaves
O+

X ⊆ OX on X as follows. On a generic open U ⊆ X as above, we set OX(U) as the
completion of A[fi/g] and O+

X(U) as the integral closurse in OX(U) of A+[fi/g]. In general
this only defines a presheaf which we can sheafifiy, but for the spaces which appear here it
will already be a sheaf. An adic space is a triple (Y,OY ,O

+
Y ) which is locally isomorphic to

the adic spectrum of a Huber pair, which is called an affinoid adic space. A rigid analytic
space is an adic space which is locally isomorhpic to Spa(A,A+), where A is a quotient of
K⟨T1, . . . , Tm⟩ and A+ is the set of power-bounded elements in A.
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There is a good theory of étale cohomology for adic spaces. An étale map of adic spaces is
roughly a map which is locally glued together from maps of Huber pairs (A,A+)→ (B,B+),
such that A→ B is étale and B+ is the integral closure of A+ is in B.

Definition 2.6. Let X be a rigid analytic space. The pro-étale site of X is defined as the
ringed site whose objects are given by formal limits U = lim←−i

Ui of rigid analytic spaces
Ui → X which are étale over X. Coverings are given by maps which are jointly surjective
on underlying topological spaces. The integral structure sheaf is defined as the completion

Ô+
X(U) := lim←−

i

(OX(Ui))
∧
p

and the structure sheaf is ÔX := Ô+
X [1/p].

The étale cohomology of a rigid analytic space X should now be the derived global
sections of the sheaf Ô+

X . However, it is unclear what we mean by that. Since we just
went through all these definitions to consider carry along the topology and completeness
on this sheaf, simply disregrarding it and taking the global sections in D(Zp) is clearly
foolish. However, topological abelian groups do not even form an abelian category and
have no immediate derived analogue. Since we are dealing with adic topologies however,
recent develepoments of Clausen-Scholze give us a good world to work in via the notions of
condensed and solid abelian groups.

2.2 Condensed Mathematics

We give the briefest introduction to the condensed world.

Definition 2.7. The pro-étale site of a point ∗proét is the category of profinite sets with
finite families of jointly surjective continuous maps as covers. For any category C we define

Cond(C) := Shhyp,acc(∗proét,C),

as the category of hypercomplete, accessible C-valued sheaves on ∗proét1. For C being topo-
logical spaces/sets/groups etc. there is a functor

C→ Cond(C) X 7→ (S 7→ X(S) := Mapcont(S,X))

which is fully faithful on compactly generated topological spaces.

Since these are categories of sheaves, good properties/strucutre of C gives the same on
Cond(C). For example, Cond(Ab) is abelian and D(Cond(Ab)) ≃ Cond(D(Z)). There is a
notion of completeness in condensed Abelian groups which is called solid.

Definition 2.8. Let Z[−] : Cond(Set) → Cond(Ab) be the free condensed abelian group
and S = limi Si be a profinite set. The free solid Abelian group on S is defined to be

Z■[S] := lim←−Z[Si]

A solid abelian group is a condensed abelian group A such that for each profinite set S,
every map Z[S]→ A factors uniquely through Z■[S].

The full category Solid ⊆ Cond(Ab) is again abelian. The point is that our cohomology
theories on rigid analytic spaces will take values in D(Solid).

1If C is a 1-category, then all sheaves are automatically hypercomplete and accessible
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Lemma 2.9. Let M be a topological abelian group which is separated and complete for a
linear topology. Moreover, let G be a profinite group acting continuously on M . Then M is
a solid abelian group with a G-action.

This applies to all the groups we are considering. Moreover, continuous cohomology
groups now admit an interpretation as derived fixed points. Let G be a solid abelian group
and denote by SolidG the category of solid abelian groups with a G-action. This is also
an abelian category and the functor SolidG → Solid which takes G-fixed points admits a
derived analogue

(−)hG : D(Solid)G → D(Solid)

Proposition 2.10. If we are in the situation of Lemma 2.9 there is an equivalence

H∗
cont(G,A) ≃ π−∗A

hG.

Back to geometry, for any rigid analytic space X, there is a natural map

π : Xproét → ∗proét,

and we define
Γ+
cond(Xproét) := π∗Ô

+
X ∈ D(Solid)

to be the derived pushforward of the integral structure sheaf.

3 The geometric input, aka the two towers

Theorem 3.1. [Faltings, Scholze-Weinstein] There exists a perfectoid space X with G-
action and a G-equvariant pro-étale Gln(Zp)-covering X → LTK . Moreover, the quotient
space X/G is given by the rigid-analytic space H := Pn−1

Qp
\
⋃

H H where H runs over the

Qp-hyperplanes in Pn−1. The residual Gln(Zp)-action is induced from the natural action on
projective space.

The space H is called the Drinfeld upper half plane and should be considered an p-adic
analogue of Pn−1

R \ R. The theorem shows that we have a diagram of adic spaces

X

LTK H

GLn(Zp) G

Since X is perfectoid and the maps are pro-étale covers, one can show that they induce
equivalences

RΓ(LTK,proét, Ô+)hG ≃ RΓ(X, Ô+
X)

hG×hGLn(Zp) ≃ RΓ(H, Ô+
H)hGLn(Zp) ∈ D(Solid),

coming from equivalences of the associated analytic quotient stacks. Thus, on the analytic
generic fiber, the mysterious action of G on Lubin Tate space can be interchanged with the
action of GLn(Zp) on the Drinfeld space H. Before we explain how to levarage this to prove
the main theorem, let us explain some of the workings of Theorem 3.1. The cover X→ LTK

is constructed as follows: Recall that LT parametrizes deformations of the formal group Γ.
For each m we can define a variant of Lubin-Tate space by asking for deformations with an
m-level strucutre, which is roughly a trivialization of the pm-torsion of the deformations.
Denote the this space of deformations with m-level structure as LTm, then GLn(Zp) acts on

6



the choice of coordinartes for the pm-torsions via GLn(Z/pm). The space X is then defined
as the limit of the generic fibers

X = lim←−(· · · → LT 2
K → LT 1

K → LTK)

which is also called the Lubin-Tate tower. On the other side, it turns out that HK is the
generic fiber of a formal scheme parametrizing of deformations of

M = Γ⊕ Γ(p) ⊕ · · · ⊕ Γ(pn−1)

where Γ(pk) denotes the pullback of Γ along the pk-Frobenius on Fp. The map HK → H

is a Gal(Fp/Fp) torsor, and taking the limit along a tower of level structures on HK the
deformation problems become “equivalent” in the limit by a theorem of Scholze-Weinstein.
This gives a Aut(Γ)-torsor X→ HK and hence the composition X→ HK → H is a G-torsor
as claimed.
To leverage this theorem, we need to understand what the derived global sections have to
do with the group cohomology groups we were thinking about initially.

Theorem 3.2 (BSSW). We can approximate the equivariant cohomology groups as follows.

1. There exists a G-equivariant morhpism of derived Solid W -algebras

A[ε]→ RΓ(LTK,proét, Ô+)

2. There exists a GLn(Zp)-equivaraint map of derived solid Zp-algebras

Zp[ε]→ RΓ(H, Ô+)

For each of these maps, the cohomology groups of the cofiber are annhiliated by a single
power of p across all degrees.

Equipped with this theorem, we can now prove Theorem 1.7. Applying homotopy fixed
points, we obtain two maps

A[ε]hG → RΓ(LTK,proét, Ô+)hG ∼= RΓ(H, Ô+)hGLn(Zp) ← Zp[ε]
hGLn(Zp).

Taking homology and inverting p, we obtain an isomorphism

H∗
cts(G, A)⊗Zp

Qp[ε] ∼= H∗
cts(GLn(Zp),Qp)⊗Qp

Qp[ε]

The equivariant splitting A ≃W ⊕Ac gives an isomorphism of the left-hand site with(
H∗

cts(G,K)⊕H∗
cts(G, Ac)⊗Zp

Qp

)
⊗Qp[ε]

The groups GLn(Zp) and G are both p-adic Lie-groups whose Lie-algebras become isomor-
phic after base changing to an algebraic closure. Thus, by a theorem of Lazard and a descent
argument we can compute that

H∗
cts(GLn(Zp),Qp) ∼= H∗

cts(G,K) ∼= H∗(gln(Q),Q)⊗Qp
∼= ΛQp

(x1, . . . , x2n−1).

Thus, comparing dimensions of Qp-vector spaces yields that H∗
cts(G, Ac) ⊗Zp

Qp = 0 as
claimed.
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